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A lot of things can be said about Classical Electrodynamics, the third
edition, by David J. Jackson. It’s seemingly exhaustive, well researched, and
certainly popular. Then, there is a general consensus among teachers that
this book is the definitive graduate text on the subject. In my opinion, this
is quite unfortunate. The text often assumes familiarity with the material,
skips vital steps, and provides too few examples. It is simply not a good
introductory text. On the other hand, Jackson was very ambitious. Aside
from some notable omissions (such as conformal mapping methods), Jackson
exposes the reader to most of classical electro-magnetic theory. Even Thomas
Aquinas would be impressed! As a reference, Jackson’s book is great!

It is obvious that Jackson knows his stuff, and in no place is this more
apparent than in the problems which he asks at the end of each chapter.
Sometimes the problems are quite simple or routine, other times difficult, and
quite often there will be undaunting amounts of algebra required. Solving
these problems is a time consuming endevour for even the quickest reckoners
among us. I present this Companion to Jackson as a motivation to other
students. These problems can be done! And it doesn’t take Feynmann to do
them.

Hopefully, with the help of this guide, lots of paper, and your own wits;
you’ll be able to wrestle with the concepts that challenged the greatest minds
of the last century.

Before I begin, I will recommend several things which I found useful in
solving these problems.

• Buy Griffiths’ text, an Introduction to Electrodynamics. It’s well writ-
ten and introduces the basic concepts well. This text is at a more basic
level than Jackson, and to be best prepared, you’ll have to find other
texts at Jackson’s level. But remember Rome wasn’t build in a day,
and you have to start somewhere.

• Obtain other texts on the level (or near to it) of Jackson. I rec-
ommend Vanderlinde’s Electromagnetism book or Eyges’ Electromag-

netism book. Both provide helpful insights into what Jackson is talking
about. But even more usefully, different authors like to borrow each
others’ problems and examples. A problem in Jackson’s text might
be an example in one of these other texts. Or the problem might be
rephrased in the other text; the rephrased versions often provide insight
into what Jackson’s asking! After all half the skill in writing a hard
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physics problem is wording the problem vaguely enough so that no one
can figure out what your talking about.

• First try to solve the problem without even reading the text. More
often than not, you can solve the problem with just algebra or only a
superficial knowledge of the topic. It’s unfortunate, but a great deal of
physics problems tend to be just turning the crank. Do remember to
go back and actually read the text though. Solving physics problems
is meaningless if you don’t try to understand the basic science about
what is going on.

• If you are allowed, compare your results and methods with other stu-
dents. This is helpful. People are quick to tear apart weak arguments
and thereby help you strengthen your own understanding of the physics.
Also, if you are like me, you are a king of stupid algebraic mistakes. If
ten people have one result, and you have another, there’s a good like-
lihood that you made an algebraic mistake. Find it. If it’s not there,
try to find what the other people could have done wrong. Maybe, you
are both correct!

• Check journal citations. When Jackson cites a journal, find the refer-
ence, and read it. Sometimes, the problem is solved in the reference,
but always, the references provide vital insight into the science behind
the equations.

A note about units, notation, and diction is in order. I prefer SI units
and will use these units whenever possible. However, in some cases, the use
of Jacksonian units is inevitable, and I will switch without warning, but of
course, I plan to maintain consistency within any particular problem. I will
set c = 1 and h̄ = 1 when it makes life easier; hopefully, I will inform the
reader when this happens. I have tried, but failed, to be regular with my
symbols. In each case, the meaning of various letters should be obvious, or
else if I remember, I will define new symbols. I try to avoid the clumsy d3~x
symbols for volume elements and the d2~x symbols for area elements; instead,
I use dV and dA. Also, I will use x̂,ŷ, and ẑ instead of î,ĵ, and k̂. The only
times I will use ijk’s will be for indices.

Please, feel free to contact me, rmagyar@eden.rutgers.edu, about any
typos or egregious errors. I’m sure there are quite a few.
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Now, the fun begins...
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Problem 1.1
Use Gauss’ theorem to prove the following:
a. Any excess charge placed on a conductor must lie entirely on
its surface.
In Jackson’s own words, “A conductor by definition contains charges capable
of moving freely under the action of applied electric fields”. That implies
that in the presence of electric fields, the charges in the conductor will be
accelerated. In a steady configuration, we should expect the charges not to
accelerate. For the charges to be non-accelerating, the electric field must
vanish everywhere inside the conductor, ~E = 0. When ~E = 0 everywhere
inside the conductor 1, the divergence of ~E must vanish. By Gauss’s law,
we see that this also implies that the charge density inside the conductor
vanishes: 0 = ∇ · ~E = ρ

ǫ0
.

b. A closed, hollow conductor shields its interior from fields due
to charges outside, but does not shield its exterior from the fields
due to charges placed inside it.
The charge density within the conductor is zero, but the charges must be
located somewhere! The only other place in on the surfaces. We use Gauss’s
law in its integral form to find the field outside the conductor.

∫

~E · d ~A =
1

ǫ0

∑

qi

Where the sum is over all enclosed charges. Evidently, the field outside the
conductor depends on the surface charges and also those charges concealed
deep within the cavities of the conductor.
c. The electric field at the surface of a conductor is normal to the
surface and has a magnitude σ

ǫ0
, where σ is the charge density per

unit area on the surface.
We assume that the surface charge is static. Then, ~E at the surface of a con-
ductor must be normal to the surface; otherwise, the tangential components
of the E-field would cause charges to flow on the surface, and that would
contradict the static condition we already assumed. Consider a small area.

∫

∇ · ~EdV =
∫

~E · d ~A =
∫

ρ

ǫ0
dV

1excluding of course charge contained within any cavities
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But ρ = 0 everywhere except on the surface so ρ should more appropriately
be written σδ(f(~x)). Where the function f(~x) subtends the surface in ques-

tion. The last integral can then be written
∫ σ

ǫ0
n̂ · d ~A. Our equation can be

rearranged.

∫

~E · d ~A =
∫

σ

ǫ0
n̂ · d ~A→

∫ (

~E − σ

ǫ0
n̂
)

· d ~A = 0

And we conclude
~E =

σ

ǫ0
n̂
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Problem 1.3
Using Dirac delta functions in the appropriate coordinates, express
the following charge distributions as three-dimensional charge den-
sities ρ(~x).
a. In spherical coordinates, a charge Q distributed over spherical shell of
radius, R.
The charge density is zero except on a thin shell when r equals R. The charge
density will be of the form, ρ ∝ δ(r − R). The delta function insures that
the charge density vanishes everywhere except when r = R, the radius of the
sphere. Integrating ρ over that shell, we should get Q for the total charge.

∫

Aδ(r − R)dV = Q

A is some constant yet to be determined. Evaluate the integral and solve for
A. ∫

Aδ(r −R)dV =
∫

Aδ(r − R)r2d(cos θ)dφdr = 4πR2A = Q

So A = Q
4πR2 , and

ρ(~r) =
Q

4πR2
δ(r − R)

b. In cylindrical coordinates, a charge λ per unit length uniformly distributed
over a cylindrical surface of radius b.

∫

Aδ(r − b)dA = λ

Since we are concerned with only the charge density per unit length in the
axial direction, the integral is only over the plane perpendicular to the axis
of the cylinder. Evaluate the integral and solve for A.

∫

Bδ(r − b)dA =
∫

Bδ(r − b)rdθdr = 2πbB = λ

So B = λ
2πb

, and

ρ(~r) =
λ

2πb
δ(r − b)

c. In cylindrical coordinates, a charge, Q, spread uniformly over a flat circular
disc of negligible thickness and radius, R.

∫

AΘ(r − R)δ(z)dV = Q
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The Θ function of x vanishes when x is negative; when x is positive, Θ is
unity.

∫

AΘ(R− r)δ(z)dV =
∫

AΘ(R− r)δ(z)rdθdzdr = πR2A = Q

So A = Q
πR2 , and

ρ(~r) =
Q

πR2
Θ(R− r)δ(z)

d. The same as in part c, but using spherical coordinates.

∫

AΘ(R− r)δ
(

θ − π

2

)

dV = Q

Evaluate the integral and solve for A.

∫

AΘ(R− r)δ
(

θ − π

2

)

dV =
∫

AΘ(R− r)δ
(

θ − π

2

)

r2d(cos θ)dφdr

= 2πR2A = Q

So A = Q
2πR2 , and

ρ(~r) =
Q

2πR2
Θ(R− r)δ

(

θ − π

2

)
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Problem 1.5
The time-averaged potential of a neutral hydrogen atom is given
by

Φ = q
e−αr

r

(

1 +
1

2
αr
)

where q is the magnitude of the electronic charge, and α−1 = a0

2
,

a0 being the Bohr radius. Find the distribution of charge (both
continuous and discrete) that will give this potential and interpret
your result physically.
We are given the time average potential for the Hydrogen atom.

Φ = q
e−αr

r

(

1 +
1

2
αr
)

Since this potential falls off faster than 1
r
, it is reasonable to suspect that

the total charge described by this potential is zero. If there were any excess
charge (+ of −) left over, it would have to produce a 1

r
contribution to the

potential.
Theoretically, we could just use Poisson’s equation to find the charge density.

ρ = −ǫ0∇2Φ = − ǫ0
r2

d

dr

(

r2dΦ

dr

)

But life just couldn’t be that simple. We must be careful because of the
singular behavior at r = 0. Try Φ′ = − q

r
+ Φ. This trick amounts to adding

a positive charge at the origin. We will have to subtract this positive charge
from our charge distribution later.

Φ′ = q

(

e−αr − 1

r

)

+
1

2
qαe−αr

which has no singularities. Plug into Poisson’s equation to get

ρ′ = − ǫ0
r2

d

dr

(

r2dΦ

dr

)

= −1

2
ǫ0qα

3e−αr

The total charge density is then

ρ(~r) = ρ′(~r) + qδ(~r) = −1

2
ǫ0qα

3e−αr + qδ(~r)

Obviously, the second terms corresponds to the positive nucleus while the
first is the negative electron cloud.
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Problem 1.10
Prove the Mean Value Theorem: for charge free space the value of
the electrostatic potential at any point is equal to the average of
the potential over the surface of any sphere centered on that point.
The average value of the potential over the spherical surface is

Φ̄ =
1

4πR2

∫

ΦdA

If you imagine the surface of the sphere as discretized, you can rewrite the
integral as an infinite sum: 1

a

∫

dA → ∑

area. Then, take the derivative of Φ̄
with respect to R.

dΦ̄

dR
=

d

dR

∑

Φ =
∑ dΦ

dR

You can move the derivative right through the sum because derivatives are
linear operators. Convert the infinite sum back into an integral.

dΦ̄

dR
=
∑ dΦ

dR
=

1

4πR2

∫

dΦ

dR
dA

One of the recurring themes of electrostatics is dΦ
dR

= −En. Use it.

dΦ̄

dR
=

1

4πR2

∫

dΦ

dR
dA = − 1

4πR2

∫

EndA = 0

By Gauss’s law,
∫

EndA = 0 since qincluded = 0. And so we have the mean
value theorem:

dΦ̄

dR
= 0 → Φ̄surface = Φcenter

q.e.d.

6



Problem 1.12
Prove Green’s Reciprocation Theorem: If Φ is the potential due to
a volume charge density ρ within a volume V and a surface charge
density σ on the conducting surface S bounding the volume V ,
while Φ′ is the potential due to another charge distribution ρ′ and
σ′, then

∫

ρΦ′dV +
∫

σΦ′dA =
∫

ρ′ΦdV +
∫

σ′ΦdA

Green gave us a handy relationship which is useful here. Namely,

∫

V

(

φ∇2ψ − ψ∇2φ
)

dV ′ =
∮

S

[

φ
∂ψ

∂n
− ψ

∂φ

∂n

]

dA

Let φ = Φ and ψ = Φ′.

∫

V

(

Φ∇2Φ′ − Φ′∇2Φ
)

dV ′ =
∮

S

[

Φ
∂Φ′

∂n
− Φ′∂Φ

∂n

]

dA

Use Gauss’s law, ∇2Φ = ρ
ǫ0

, to replace the Laplacian’s on the left side of

the equal sign with charge densities. From problem 1.1, we know ∂Φ
∂n

= σ
ǫ0

.
Replace the derivatives on the right side by surface charge densities.

1

ǫ0

∫

V
(Φρ′ − Φ′ρ) d3x′ =

1

ǫ0

∮

S
[Φσ′ − Φ′σ] dA

With a tiny bit of rearrangement, we get Green’s reciprocity theorem:

∫

ρΦ′dV +
∫

σΦ′dA =
∫

ρ′ΦdV +
∫

σ′ΦdA
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Problem 1.13
Two infinite grounded conducting planes are separated by a dis-
tance d. A point charge q is placed between the plans. Use the
reciprocation theorem to prove that the total induced charge on
one of the planes is equal to (−q) times the fractional perpendicular
distance of the point charge from the other plane.
Two infinite grounded parallel conducting planes are separated by a distance
d. A charge, q, is placed between the plates.
We will be using the Green’s reciprocity theorem

∫

ρΦ′dV +
∫

σΦ′dA =
∫

ρ′ΦdV +
∫

σ′ΦdA

For the unprimed case, we have the situation at hand. ρ and σ vanish at
all points except at the two plates’ surfaces and at the point charge. The
potential at the two grounded plates vanishes.
We need to choose another situation with the same surfaces for which we
know the potential. The easiest thing that comes to mind is the parallel
plate capacitor. We take the first plate to be at x = 0 and the second at
x = d. The charge density vanishes everywhere except on the two plates.
The electrostatic potential is simple, Φ′(x) = Φ0

x
d

which we know is true for
the parallel plate capacitor.
Plugging into Green’s reciprocity theorem, we have

(

q × Φ0
x

d

)

+

(

0 + q′Φ0
d

d

)

= (0) + (0)
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With a little algebra, this becomes

q′ = −x
d
q

on plate two. By symmetry, we can read off the induced charge on the other
plate, q′ = −d−x

d
q = −(1 − x

d
)q.
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Bonus Section: A Clever Ruse
This tricky little problem was on my qualifying exam, and I got it wrong.
The irony is that I was assigned a similar question as an undergrad. I got it
wrong back then, thought, “Whew, I’ll never have to deal with this again,”
and never looked at the solution. This was a most foolish move.
Calculate the force required to hold two hemispheres (radius R)
each with charge Q/2 together.
Think about a gaussian surface as wrapping paper which covers both hemi-
spheres of the split orb. Now, pretend one of the hemispheres is not there.
Since Gauss’s law only cares about how much charge is enclosed, the radial
field caused by one hemisphere is

~E =
1

2

1

4πǫ0

Q

R2
r̂

Because of cylindrical symmetry, we expect the force driving the hemispheres
apart to be directed along the polar axis. The non polar components cancel,
so we need to consider only the polar projection of the electric field. The
assumption is that we can find the polar components of the electric field
by taking z part of the radial components. So we will find the northwardly
directed electric field created by the southern hemisphere and affecting the
northern hemisphere and integrate this over the infinitesimal charge elements
of the northern hemisphere. Using dq = Q

4πR2dA, we have

Fz =
∫

north
Ezdq =

∫ (

1

4πǫ0

Q

2R2
cos θ

)

Q

4πR2
dA

where θ is the angle the electric field makes with the z-axis.

Fz = − 1

4πǫ0

Q2

8πR4
2πR2

∫ 1

0
cos θd(cos θ) = − Q2

32πǫ0R2

The conclusions is that we have to push down on the upper hemisphere if
the bottom is fixed, and we want both shells to stay together.
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Problem 2.1
A point charge q is brought to a position a distance d away from an
infinite plane conductor held at zero potential. Using the method
of images, find:
a. the surface charge density induced on the plane, and plot it;
Jackson asks us to use the method of images to find the potential for a point
charge placed a distance, d, from a infinitely large zero potential conducting
x-z sheet located at y = 0.

Φ(~r) =
1

4πǫ0
q

|~ro − ~rq
′| +

1
4πǫ0

qI

|~ro − ~rI
′|

The first term is the potential contribution from the actual charge q and the
second term is the contribution from the image charge qI . Let the coordinates
x, y, and z denote the position of the field in question, while the coordinates
x0, y0, and z0 denote the position of the actual charge. Choose a coordinate
system so that the real point charge is placed on the positive y-axis. x0

and y0 vanish in this coordinate system. Now, apply boundary conditions
Φ(y = 0) = 0.

Φ(y = 0) =
1

4πǫ0
q

√

x2 + z2 + y2
0

+
1

4πǫ0
q′

√

(x− x′I)
2 + y − y′I

2 + (z − z′I)
2

= 0

We can have Φ = 0 for all points on the x-z plane only if q′ = −q, x′I = 0,
z′I = 0, and y′I = −y0. Label y0 = d.

Φ(x, y, z) =
1

4πǫ0
q





1
√

x2 + (y − d)2 + z2
− 1
√

x2 + (y + d)2 + z2





To find the surface charge density induced on the sheet, we use the formula
from problem 1.1.

σ = ǫ0En = −ǫ0
∂Φ

∂y
|y=0

σ = − 1

4πǫ0
q

2d

(x2 + d2 + z2)
3

2

= − q

4πǫ0d2

(

2

(1 + x2/d2 + y2/d2)
3

2

)
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b. the force between the plane and the charge by using Coulumb’s
law for the force between the charge and its image;
The force between the charge and its image is given by Coulumb’s law.

~F =
1

4πǫ0

qq′

|~rq − ~rI
′|2 ŷ = − 1

4πǫ0

q2

4d2
ŷ

Where the effective distance between the charge and image is |~rq
′− ~rI

′| = 2d.
The force is obviously attractive because of the minus sign.
c. the total force acting on the plane by integrating σ2

2ǫ0
over the

whole plane;
Now, we use the method Jackson suggests. First, we square our equation for
σ.

σ2 =
q2

16π2

4d2

(x2 + d2 + z2)3

Jackson tell us that the force can be computed from the following integral:

~F =
∫

σ2

2ǫ0
d ~A
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So we do this integral.

~F =
∫ ∞

0

∫ 2π

0

q2

32π2ǫ0

rd2

(r2 + d2)3
dθdrŷ

where r2 = x2 + z2. Let u = r2 + d2 and du = 2rdr.

~F =
∫ ∞

−d2

q2

16πǫ0

1

2

d2

u3
duŷ = − 1

4πǫ0

q2

4d2
r̂

Which is the same as in part b.
d. The work necessary to remove the charge q from its position at
d to infinity;

W =
∫

F · r = −
∫ ∞

d

1

4πǫ0

q2

4r2
=

1

4πǫ0

q2

4r
|∞d = − q2

16πǫ0d

The image charge is allowed to move in the calculation.
e. The potential energy between the charge q and its image. Com-
pare to part d.

U = −1

2

1

4πǫ0

q2

|r − r′| = − q2

8πǫ0d

Here we find the energy without moving the image charge so our result is
different from part d.
f. Find the answer to part d in electron volts for an electron orig-
inally one Angstrom from the surface.
Use the result from part d. Take d ≈ 1 Angstrom so W = 1

4πǫ0

q2

4d
= 5.77 ×

10−19 joules or 3.6 eV.
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Problem 2.2
Using the method of images, discuss the problem of a point charge
q inside a hollow, grounded, conducting sphere of inner radius a.
Find. . .
I botched this one up the first time I did it. Hopefully, this time things will
turn out better!
a. the potential inside the sphere
As implied by definition of conducting V = 0 on the surface. We must place
an image charge outside the sphere on the axis defined by the real charge q
and the center of the sphere. Use a Cartesian coordinate system and set the
x-axis to be the axis defined by the charge, its image, and the center of the
sphere.

Φ =
1

4πǫ0





q
√

(x− x1)2 + y2 + z2
+

q′
√

(x− x′2)
2 + y2 + z2





The charge q is positioned at x1 and its image q′ is at x′2
2. For the real

charge outside the sphere and its image inside, Jackson finds qin = − a
xout

qout

and xin = a2

xout
. We let xin = x1 and xout = x′2, and the second equations

tells us: x′2 = a2

x1
. Let qin = q and qout = q′. Care must be taken because

the first equation depends on xout = x2. q = − a
x2
q′ = −x1

a
q′. So q′ = − a

x1
q.

Incidentally, even if I had no help from Jackson’s text, this is a good guess
because dimensionally it works. This image charge distribution does satisfy
the boundary conditions.

Φ(a) =
1

4πǫ0
q





1
√

x2
1 + a2

− a

x1

1
√

(a2

x1
)2 + a2



 = 0

A more rigorous determination in not necessary because this function is
unique. Therefore, for a real charge q placed within a conducting sphere
of radius a, we find the potential to be:

Φ(x, y, z) =
1

4πǫ0
q





1
√

(x− x1)2 + y2 + z2
− a

x1

1
√

(x− a2

x1
)2 + y2 + z2





2I’ve been a little redundant with the subscript and the prime, but I felt clarity was

better than brevity at this point.
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where x1 < a for the charge inside the sphere and x1 6= 0. The charge should
not be placed at the center of the sphere. I am sure that a limiting method
could reveal the potential for a charge at the center, but that is not necessary.
Use Gauss’s law to get

Φ =
1

4πǫ0

q

r
− 1

4πǫ0

q

a

b. the induced surface charge density
The surface charge density will simply be the same as calculated by Jackson
for the inverse problem. For a charge outside a conducting sphere, the surface
charge density is such.

σ = − 1

4πǫ0
q
a

x1

1 − a2

x2
1

(1 + a2

x2
1

− 2 a
x1

cos γ)
3

2

where γ is the angle between the x-axis and the area element. Jackson’s
result comes from taking σ = −ǫ0 ∂Φ

∂n
, but our potential is functionally the

same. Thus, our surface charge distribution will be the same.

σ = − 1

4πǫ0
q
a

x1

1 − a2

x2
1

(1 + a2

x2
1

− 2 a
x1

cos γ)
3

2

c. the magnitude and direction of the force acting on q.
The force acting on q can be obtained by Coulomb’s law.

F =
1

4πǫ0

qq′

|r − r′|2 =
1

4πǫ0
q
(

− a

x1

q
)

1
(

a2

x1
− x1

)2 = − 1

4πǫ0
q2 ax1

(a2 − x2
1)

2

d. Is there any change in the solution if the sphere is kept at fixed
potential Φ? Is the sphere has a total charge Q on its inner and
outer surfaces?
If the sphere is kept at a fixed potential Φ, we must add an image charge at
the origin so that the potential at R is Φ. If the sphere has a total charge
Q on its inner and outer surfaces, we figure out what image charge would
create a surface charge equal to Q and place this image at the origin.

15



2.28
A closed volume is bounded by conducting surfaces that are the n
sides of a regular polyhedron (n = 4, 6, 8, 12, 20). The n surfaces are
at different potentials Φi, i = 1, 2, ..., n. Prove in the simplest way
you can that the potential at the center of the polyhedron is the
average of the potential on the n sides.
I will do a simple derivation. We have some crazy n-sided regular polyhedron.
That means that each side has the same area and each corner has the same
set of angles. If one side is at potential Φi but all the other sides are at zero
potential. The potential in the center of the polygon will be some value,
call it Φ′

i. By symmetry, we could use this same approach for any side; A
potential Φi always produces another potential Φ′

i at the center. Now, we
use linear superposition. Let all the sides be at Φi. Then, the potential at
the center is

Φcenter =
n
∑

i=1

Φ′
i

If all the Φi are equal, then so are all the Φ′
i. Then, Φc = nΦ′

i, and we
can solve for Φ′

i = Φc

n
. If each surface is at some potential, Φi, then the

entire interior is at that potential, and Φi = Φc according to the mean value
theorem. Therefore, Φ′

i = Φi

n
is the contribution from each side.

For a set of arbitrary potentials for each side, we can use the principle of
linear superposition again.

Φc =
1

n

n
∑

i=1

Φi

q.e.d.
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Problem 3.3
A think, flat, circular, conducting disc of radius R is located in the
x-y plane with its center at the origin and is maintained at a fixed
potential Φ. With the information that the charge density of the
disc at fixed potential is proportional to (R2 − ρ2)−

1

2 , where ρ is the
distance out from the center of the disk. . .
Note ρ is used where I usually use r′.
a. Find the potential for r > R.
For a charged ring at z = 0 on the r-φ plane, Jackson derived the following:

Φ(r, θ) =







q
∑∞

L=0
ρL

rL+1PL(0)PL(cos θ) , r ≥ R

q
∑∞

L=0
rL

ρL+1PL(0)PL(cos θ) , r < R

But

PL(0) =







0 , for L odd

(−1)
L
2

(L+1)!!
(L+1)L!!

= f(L) , for L even

We can replace L by 2ℓ because every other term vanishes.
Since σ ∝ (R2 − ρ2)−

1

2 on the disk, the total charge on the disk is

Q =
∫ R

0

2πκρ√
R2 − ρ2

dρ

Let u = R2 − ρ2, du = −2ρdρ, so

Q = −
∫ 0

R2

πκ√
u
du = 2πκu

1

2 |R2

0 = 2πκR

And κ = Q
2πR

. Now, we solve for a disk made up of infinitely many infinites-
imally small rings. Each contributes to the potential

δΦ(r, θ) = σ
ℓ
∑

ℓ=0

ρ2ℓ

r2ℓ+1
f(2ℓ)P2ℓ(cos θ)dA, r ≥ R

where f(2ℓ) = P2ℓ(0). And integrating over the disk gives the total potential.

Φ(r, θ) =
∫

κ(R2 − ρ2)−
1

2

ℓ
∑

ℓ=0

ρ2ℓ

r2ℓ+1
f(2ℓ)P2ℓ(cos θ)ρdρdφ

= 2πκ
∑

∫ R

0
(R2 − ρ2)−

1

2

ρ2ℓ

r2ℓ+1
f(2ℓ)P2ℓ(cos θ)ρdρ
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Consider the integral over ρ.

∫ R

0

ρ2ℓ+1

√
R2 − ρ2

dρ =
1

R

∫ R

0

ρ2ℓ+1

√

1 − ρ2

R2

dρ

Let ρ
R

= sin θ, dρ = R cos θdθ.

I1 =
1

R

∫ π
2

0
R

(R)2ℓ+1 sin2ℓ+1 θ

cos θ
cos θdθ = R2ℓ+1 2ℓℓ!

(2ℓ+ 1)!!

Using
∫ π

2

0
sin2ℓ+1 θdθ =

2ℓℓ!

(2ℓ+ 1)!!

So

Φ = 2πκ
∑ 2ℓℓ!

(2ℓ+ 1)!!
f(2ℓ)

R2ℓ+1

r2ℓ+1
P2ℓ(cos θ)

but we know f(2ℓ).

Φ =
4Q

R

∑

(−1)ℓ (2ℓ+ 1)!!

(2ℓ+ 1)(2ℓ)!!

2ℓℓ!

(2ℓ+ 1)!!

(

R

r

)2ℓ (R

r

)

P2ℓ(cos θ)

Since (2ℓ)!! = 2ℓℓ!,

Φ =
4Q

R

∑

(−1)ℓ 1

2ℓ+ 1

(

R

r

)2ℓ (R

r

)

P2ℓ(cos θ) , r ≥ R

The potential on the disk at the origin is V.

V =
∫ 2π

0

∫ R

0
σρdρdφ =

∫

2Q

πR

2πρ

|ρ|
√
R2 − ρ2

dρ

Using
∫ dx√

a2−x2
= sin−1

(

x
|a|

)

,

V =
2Q

πR
2π sin−1

(

x

|R|

)

|R0 =
2Qπ

R

And κ = 2Q
πR

= V
π2 . Then,

Φ =
2V

π

(

R

r

)

∑

(−1)ℓ 1

2ℓ+ 1

(

R

r

)ℓ

P2ℓ(cos θ), r ≥ R
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A similar integration can be carried out for r < R.

Φ =
2πQ

R
− 4Q

R

∑

(−1)ℓ 1

2ℓ+ 1

(

r

R

)2ℓ ( r

R

)

P2ℓ(cos θ) , r ≤ R

b. Find the potential for r < R.
I can’t figure out what I did here. I’ll get back to this.
c. What is the capacitance of the disc?
C = Q

V
, but from part a Q = 2V R

π
so

C =
2V R

π

(

1

V

)

=
2R

π
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Problem 3.9
A hollow right circular cylinder of radius b has its axis coincident
with the z axis and its ends at z = 0 and z = L. The potential on
the end faces is zero while the potential on the cylindrical surface
is given by Φ(φ, z). Using the appropriate separation of variables
in cylindrical coordinates, find a series solution for the potential
everywhere inside the cylinder.
V = 0 at z = 0, L. Because of cylindrical symmetry, we will try cylindrical
coordinates. Then, we have

∇2Φ = 0 → 1

r

∂

∂r

(

1

r

∂Φ

∂r

)

+
1

r2

∂2Φ

∂φ2
+
∂2Φ

∂z2
= 0

Try Φ(r, φ, z) = R(r)Z(z)Q(φ). Separating the Laplace equation in cylindri-
cal coordinates, we find three differential equations which must be satisfied.

∂2Z

∂z2
− k2Z = 0

has the solution
Z = A sin(kz) +B cos(kz)

The solution must satisfy boundary conditions that Φ = 0 at z = 0, L.
Therefore, B must vanish.

Z = A sin(kz)

where k = nπ
L

.
Similarly, we have for Q

∂2Q

∂φ2
−m2Q = 0

which has the solution

Q = C sin(mφ) +D cos(mφ)

m must be an integer for Q to be single valued.
The radial part must satisfy the frightening equation. Note the signs. This
is not the typical Bessel equations, but have no fear.

∂2R

∂x2
+

1

x

∂R

∂x
−
(

1 +
m2

x2

)

R = 0
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where x = kr. The solutions are just modified Bessel functions.

R(x) = EIm(x) + FKm(x)

m must be an integer for R to be single valued. Im and Km are related to
other Bessel and Neumann functions via

Im(kr) = i−mJm(ikr)

Km(kr) =
π

2
im+1H(1)

m (ikr)

The potential is finite at r = 0 so

H(1)
m (0) = Jm(0) + iNm(0) = 0

But Km 6= 0 so F = 0.
We can now write Φ in a general form.

Φ = RZQ =
∑

A sin
(

nπ

L
z
)

(C sin(mφ) +D cos(mφ))EIm

(

nπ

L
r
)

Let A and E be absorbed into C and D.

Φ =
∞
∑

m=0

∞
∑

n=0

sin
(

nπ

L
z
)

Im

(

nπ

L
r
)

(Cmn sin(mφ) +Dmn cos(mφ))

Now, we match boundary conditions. At r = b, Φ(φ, z) = V (φ, z). So

Φ(φ, z) =
∑

m,n

sin
(

nπ

L
z
)

Im

(

nπ

L
b
)

(Cmn sin(mφ) +Dmn cos(mφ)) = V

The Im
(

nπ
L
b
)

are just a set of constants so we’ll absorb them into C ′
mn and

D′
mn for the time being. The coefficients, C ′

mn and D′
mn, can be obtained via

Fourier analysis.

C ′
mn = κ

∫ 2L

0

∫ 2π

0
Φ(φ, z) sin

(

nπ

L
z
)

sin (mφ) dφdz

D′
mn = κ

∫ 2L

0

∫ 2π

0
Φ(φ, z) sin

(

nπ

L
z
)

cos (mφ) dφdz
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κ is determined by orthonormality of the various terms.

κ−1 =
∫ 2L

0
sin2

(

nπ

L
z
)

dz
∫ 2π

0
sin2 (mφ) dφ =

L

πnm

[

x

2
− sin(2x)

4

]

|2πn
x=0 ×

[

x

2
− sin(2x)

4

]

|2πm
x=0

So κ = 1
Lπ

. Finally, we have

Cmn =
1

Lπ

1

Im
(

nπ
L
b
)

∫ 2L

0

∫ 2π

0
Φ(φ, z) sin

(

nπ

L
z
)

sin (mφ) dφdz

And

Dmn =
1

Lπ

1

Im
(

nπ
L
b
)

∫ 2L

0

∫ 2π

0
Φ(φ, z) sin

(

nπ

L
z
)

cos (mφ) dφdz
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Problem 3.14
A line charge of length 2d with a total charge of Q has a linear
charge density varying as (d2−z2), where z is the distance from the
midpoint. A grounded, conducting, spherical shell of inner radius
b > d is centered at the midpoint of the line charge.
a. Find the potential everywhere inside the spherical shell as an
expansion in Legendre polynomials.

Q =
∫ d

−d
κ(d2 − z2)dz =

4

3
κd3

so κ = 3Q
4d3 and

λ =
3Q

4d3
(d2 − z2)

For use later, we will write this in spherical coordinates.

ρ(r, θ, φ) =
3Q

4d3
(d2 − r2)

1

πr2
δ(cos2 θ − 1)

For the inside of the spherical shell, the Green’s function is:

G(x, x′) = 4π
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

Yℓm(θ′, φ′)Yℓm(θ, φ)

(2ℓ+ 1)
[

1 − (a
b
)2ℓ+1

]

(

rℓ
< − a2ℓ+1

rℓ+1
<

)(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

Where a and b denote the inner and outer radii. Here a = 0 so

G(x, x′) = 4π
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

Yℓm(θ′, φ′)Yℓm(θ, φ)

(2ℓ+ 1)
rℓ
<

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

because of azimuthal symmetry on m = 0 terms contribute.

G(x, x′) = 4π
∞
∑

ℓ=0

Pℓ(cos θ′)Pℓ(cos θ)rℓ
<

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

The potential can be obtained through Green’s functions techniques.

Φ(x) =
1

4πǫ0

∫

d3x′ ρ(x′)G(x, x′)
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And explicitly

Φ =
1

4πǫ0

∫

dφ′d(cos θ′)r′2dr′
3Q

d3r2
(d2−r′2)δ(cos2 θ′−1)

∞
∑

ℓ=0

Pℓ(cos θ′)Pℓ(cos θ)rℓ
<

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

The integrations over φ′ and θ′ are easy and fun!

Φ =
3Q

16πǫ0d3

∞
∑

ℓ=0

(Pℓ(1)+Pℓ(−1))Pℓ(cos θ)
∫ b

0
dr′ r′2(d2−r′2)rℓ

<

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

Integration over r′ must be done over several regions: r < d and r′ > r, r < d
and r′ < r, r > d and r′ > r, and r > d and r′ < r. When the smoke clears,
we find:

Φ(r, θ, φ) =
3Q

16πǫ0d3

∞
∑

ℓ=0

(Pℓ(1) + Pℓ(−1))Pℓ(cos θ)I(r, ℓ)

where

I(r, ℓ) =

(

1

rℓ+1
− rℓ

b2ℓ+1

)(

d2 r
ℓ+1

ℓ+ 1
− rℓ+3

ℓ+ 3

)

+rℓ

[

−d
2−ℓ

ℓ
+

d2−ℓ

ℓ− 2
− dℓ+3

(ℓ+ 1)b2ℓ+1
− dℓ+3

(ℓ+ 3)b2ℓ+1

]

−rℓ

[

− d2

ℓrℓ
+

r2−ℓ

ℓ− 2
− d2rℓ+1

(ℓ+ 1)b2ℓ+1
− rℓ+3

(ℓ+ 3)b2ℓ+1

]

Presumably, this can be reduced, but I never got around to that. For r < d
and

Φ(r, θ, φ) =
3Q

16πǫ0d3

∞
∑

ℓ=0

(Pℓ(1)+Pℓ(−1))Pℓ(cos θ)

(

1

rℓ+1
− rℓ

b2ℓ+1

)(

2dℓ+3

(ℓ+ 1)(ℓ+ 3)

)

The term Pℓ(1) + Pℓ(−1) is zero for odd ℓ and 2Pℓ(1) for even ℓ. So we can
rewrite our answer.
b. Calculate the surface charge density induced on the shell.

σ = −ǫ0∇Φ · n̂

σ = −3Q

8π

∞
∑

ℓ=0

Pℓ(cos θ)
(2ℓ+ 1)

(ℓ+ 1)(ℓ+ 3)

2

b2

(

d

b

)ℓ
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c. Discuss your answers to parts a and b in the limit d << b.

In this limit, the term
(

d
b

)ℓ
except when ℓ = 0. Then,

σ = −3Q

8π
P0(cos θ)

1

3

2

b2
= − Q

4πb2

This is what we would have expected if a point charge were located at the
origin and the sphere were at zero potential. When d << b, r will most likely
be greater than d for the region of interest so it will suffice to take the limit
of the second form for Φ. Once again, only ℓ = 0 terms will contribute.

Φ =
Q

4πǫ0

(

b− r

br

)

This looks like the equation for a spherical capacitor’s potential as it should!
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Problem 4.6
A nucleus with quadrupole moment Q finds itself in a cylindrically
symmetric electric field with a gradient(∂Ez

∂z
)0 along the z axis at

the position of the nucleus.
a. Find the energy of the quadrupole interaction.
Recall that the quadrapole tensor is

Qij =
∫

(

3x′ix
′
j − r′2δij

)

ρ(~r′)dV ′

For the external field, Gauss’s law tells us that a vanishing charge density
means ∇· ~E = 0. ∂Ez

∂z
+ ∂Ex

∂x
+ ∂Ey

∂y
= 0. The problem is cylindrically symmetric

so ∂Ex

∂x
= ∂Ey

∂y
= −1

2
∂Ez

∂z
.

According to Jackson’s equation 4.23, the energy for a quadrapole is

W = −1

6

3
∑

i=1

3
∑

j=1

∫

(

3xixj − r2δij
)

ρ
∂Ej

∂xi
d3x

When i 6= j, there is no contribution to the energy. You can understand this
by recalling that the curl of ~E is zero for static configurations, i.e. ∇× ~E = 0.
When xi = z and xj = z, the integral is clearly qQ33 = qQnucleus, and the
energy contribution is W3 = − q

6
Q∂Ez

∂z
. Jackson hints on page 151 that in

nuclear physics Q11 = Q22 = −1
2
Q33. For xi or xj equals x or y, W =

(−1
2
)(−1

2
)(− q

6
Q∂Ez

∂z
) = − q

24
Q∂Ez

∂z
. Thus,

W = −
(

1

6
+

1

12

)

qQ

(

∂Ez

∂z

)

= −q
4
Q

(

∂Ez

∂z

)

q.e.d.
b. Calculate (∂Ez

∂z
)0 in units of q

4πǫ0a3
0

.

We are given Q = 2×10−28 m2, W/h = 10 MHz, a0 = 4πǫ0h̄2

meq2 = 0.529×10−10

m, q
4πǫ0a3

0

= 9.73 × 102 N/(mC), and from part a,

W = −q
4
Q

(

∂Ez

∂z

)

Solve for
(

∂Ez

∂z

)

,
(

∂Ez

∂z

)

=
W

h

(

−h
q

)

4

1

1

Q
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Plugging in numbers, 8.27 × 1020 N/(mC). In units of q
4πǫ0a3

0

:

(

∂Ez

∂z

)

= 8.5 × 10−2

(

q

4πǫ0a3
0

)

N

m · C
c. Nuclear charge distributions can be approximated by a constant
charge density throughout a spheroidal volume of semi-major axis
a and semi-minor axis b. Calculate the quadrupole moment of such
a nucleus, assuming that the total charge is Zq. Given that Eu153
( Z = 63) has a quadrupole moment Q = 2.5 × 10−28 m2 and a mean
radius, R = a+b

2
= 7× 10−15 m, determine the fractional difference in

the radius a−b
R

.
For the nucleus, the total charge is Zq where q is the charge of the electron.
The charge density is the total charge divided by the volume for points inside
the nucleus. Outside the nucleus the charge density vanishes. The volume of
an general ellipsoid is given by the high school geometry formula, V = 4

3
πabc.

In our case, a is the semi-major axis, and b and c are the semi-minor axes.
By cylindrical symmetry b = c.

ρ =

{

3Zq
4πab2

, r ≤ b
a

√
a2 − z2

0, r > b
a

√
a2 − z2

The nuclear quadrapole moment is defined Q = 1
q

∫

(3z2 − R2) ρdV . Because

of the obvious symmetry, we’ll do this in cylindrical coordinates where R2 =
z2 + r2 and dV = rdθdrdz.

Q =
3Z

4πab2

∫ a

−a

∫ b
a

√
a2−z2

0

∫ 2π

0

(

3z2 − z2 − r2
)

rdθdrdz

The limits on the second integral are determined because the charge density
vanishes outside the limits.

Q =
3Z

4πab2

∫ a

−a

∫ b
a

√
a2−z2

0

(

2z2 − r2
)

rdrdz

Substitute r2 = u, and integrate over du.

Q =
3Z

4πab2

∫ a

−a

∫ b2− z2b2

a2

0

(

2z2 − u
)

dudz

=
3Z

4πab2

∫ a

−a



2z2

(

b2 − z2b2

a2

)

− 1

2

(

b2 − z2b2

a2

)2


 dz
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Simplify.

Q =
3Z

4ab2

∫ a

−a

[

2z2b2 − 2z4b2

a2
− 1

2
b4 +

b4z2

a2
− 1

2
b4z4a4

]

dz

Evaluate the next integral.

Q =
3Z

4ab2

[

4a3b2

3
− 4b2a3

5
− b4a+

2b4a

3
− 1

5
ab4

]

Simplify and factor.

Q =
2

5
Za2 − 2

5
zb2 =

2Z

5
(a+ b)(a− b) =

8Z

5

(

a + b

2

)(

a− b

2

)

Plug in R = a+b
2

. R is the mean radius, 7 × 10−15 meters.

Q =
8Z

5
R

(

a− b

2

)

So finally, I can get what Jackson desires.

(

a− b

2

)

=
5Q

8ZR
→ a− b

R
=

5Q

8Z

2

R2
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Problem 4.8
a very long, right circular, cylindrical shell of dielectric constant ǫ

ǫ0
and inner and outer radii a and b respectively, is placed in a previ-
ously uniform electric field ~E0 with the cylinder’s axis perpendic-
ular to the field. The medium inside and outside the cylinder has
a dielectric constant of unity. Determine the potential and electric
field in the three regions, neglecting end effects.
Since the total charge is zero, we can use Poisson’s equation:

∇2Φ = 0

Symmetry in this problem leads me to choose cylindrical coordinates in which
the Poisson equation is

∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
+
∂2Φ

∂z2
= 0

Because of translational symmetry along the zaxis, Φ is independent of z,
and we need only consider the problem in the r-θ plane.

∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
= 0

Try a separation of variables, i.e. Φ(r, θ) = R(r)Θ(θ).

r2

R

(

∂2R

∂r2
+

1

r

∂R

∂r

)

+
1

Θ2

∂2Θ

∂θ2
= 0

This will give us two equations. The first isn’t too hard to solve.

∂2Θ

∂θ2
= −m2Θ
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This admits the obvious solution:

Θ(θ) = e±imθ

We’ll employ the convenient linear superposition

Θ(θ) = cos(mθ)

The second equation is a bit trickier.

∂2R

∂r2
+

1

r

∂R

∂r
− m2

R2
R = 0

Let’s guess that
R(r) = r±m, m 6= 0

and
R(r) = ln r + C, m = 0

are solutions. In fact, it is not that hard to show that these are in fact
solutions.
The general solution is a linear combination of these solutions. The boundary
conditions will determine just what this linear combination is. The uniform
external field can be reproduced by Φ = −E0r cosφ. At the surface of the
cylinder we have another boundary condition. Namely, at x = a or b, ~E‖
and ~D⊥ are continuous. Recall that E‖ = −∂Φ

∂θ
and ǫE⊥ = −ǫ∂Φ

∂r
. On

physical grounds, we can limit the form of the solution outside and inside
the cylindrical region. Outside, we need to have the electric field at infinity,
but we certainly don’t want the field to diverge. The logarithmic and rn with
n > 1 terms diverge as r goes to infinity; clearly, these terms are unphysical.

Φout = −E0r cos θ +
∞
∑

m=1

Am
1

rm
cos(mθ + αm)

In between the cylindrical shells, we don’t have any obvious physical con-
straints.

Φmid =
∞
∑

m=1

B−m
1

rm
cos(mθ + β−m) +

∞
∑

m=1

Bmr
m cos(mθ + βm) + C ln r
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Inside, we have to eliminate the diverging terms at the origin.

Φin =
∞
∑

m=1

Dmr
m cos(mθ + δm)

Now, it’s time to match boundary conditions. They were Φ = −E0r cosφ as
x → ∞, and at x = a or b; E‖ = −∂Φ

∂θ
and ǫE⊥ = −ǫ∂Φ

∂r
are continuous. For

m 6= 1, we find αm = βm = β−m = δm and Am = Bm = B−m = Dm = 0.
We might have suspected that only the m = 0 terms contribute because the
only thing that breaks the symmetry in this problem is the external electric
field which has m = 1. Note further that for m = 0, A0 = 0, and C = 0. I
am left with the following forms:
Outside:

Φout = −E0r cos θ + A1
1

r
cos(θ + α1)

In between the cylinders:

Φmid = B−1
1

r
cos(θ + β−1) +B1r cos(θ + β1)

Inside the cylinders:
Φin = D1r cos(θ + δ1)

Because each region has the same symmetry with respect to the external
field, we can drop the phases. For the outside region, we find

Φout =
(

−E0r + A1
1

r

)

cos(θ)

And likewise in between, we have

Φmid =
(

B−1
1

r
+B1r

)

cos(θ)

And inside,
Φin = D1r cos(θ)

Applying the other boundary condition, ∂Φ
∂θ

, we get Outside:

−E0b+ A1
1

b
= B1b+ B−1

1

b
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And

B1a +
B−1

a
= D1a

For the final boundary condition, ǫ∂Φ
∂r

:

−ǫ0
(

E0 +
A1

b2

)

= ǫ(B1 − B−1
1

b2
)

ǫ(B−1 −B1
1

a2
) = ǫ0D1

Let ǫ
ǫ0

= κ, the capacitance. Solve simultaneously.

A1 = E0b
2 + 2E0b

2 a2(1 − κ) − b2(1 + κ)

b2(1 + κ)2 − a2(1 − κ)2

B1 =
−2E0b

2(1 + κ)

b2(1 + κ)2 − a2(1 − κ)2

B−1 =
2E0a

2b2(1 − κ)

b2(1 + κ)2 − a2(1 − κ)2

D1 =
−4E0b

2

b2(1 + κ)2 − a2(1 − κ)2

b. Sketch the lines of force for a typical case of b ≃ 2a.
Since we are only concerned with a qualitative sketch, we’ll consider a par-
ticular case. Take κ = 3, E0 = 2 and a2 = 2. Then, we have A1 = −2,
B1 = −2, B−1 = −2, and D1 = −1. The potential becomes

Φout = −Er cos θ − 2

r
cos θ

Φmid = −2r cos θ − 2

r
cos θ

And
Φin = −r cos θ

Now, I just need to make the plots.
c. Discuss the limiting forms of your solution appropriate for a
solid dielectric cylinder in a uniform field, and a cylindrical cavity
in a uniform dielectric.
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For the dielectric cylinder, I shrink the inner radius down to nothing; a→ 0.

A1 =
κ− 1

κ+ 1
b2E0

B1 =
−2E0

1 + κ

B−1 = 0

D1 =
−4E0

(1 + κ)2

For the cylindrical cavity, I place the surface of the outer shell at infinity,
b→ ∞. In this limit A1 is ill-defined, so we’ll ignore it.

B1 =
−2E0

1 + κ

B−1 = 2E0a
2 1 − κ

(1 + κ)2

D1 =
−4E0

(1 + κ)2
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Problem 4.10
Two concentric conducting spheres of inner and outer radii a and
b, respectively, carry charges ±Q. The empty space between the
spheres is half-filled by a hemispherical shell of dielectric (of di-
electric constant κ = ǫ

ǫ0
), as shown in the figure.

a. Find the electric field everywhere between the spheres.
We use what I like to call the D law, that is ∇ · ~D = ρfree. The divergence
theorem tells us ∮

~D · d ~A = Q

Because of this radial symmetry, we expect that Eθ and Eφ will vanish, and
by Gauss’s law, we expect Er to be radially symmetric. Therefore, we need
only to find the radial components of ~D recalling that ~E = ǫ ~D. Use the D
theorem and that ~D = ǫ ~E.

ǫ0Er2πr
2 + ǫEr2πr

2 = Q

This gives an electric field:

~E =

(

2

1 + ǫ
ǫ0

)

Q

4πǫ0r2
r̂

This has the form of Coulomb’s law but with an effective total charge, Qeff =
2ǫ0

ǫ+ǫ0
Q.

b. Calculate the surface charge distribution on the inner sphere.
σi = ǫiEr in this case. On the inner surface,

σdielectric =
(

ǫ

ǫ0 + ǫ

)

Q

2πa2

And

σair =
(

ǫ0
ǫ0 + ǫ

)

Q

2πa2
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c. Calculate the polarization charge density induced on the surface
of the dielectric at r = a.
Find the polarization charge density by subtracting the effective charge den-
sity from the total contained charge density: Qeff = Q + Qpol.. This gives

Qpolarization =
(

ǫ0−ǫ
ǫ0+ǫ

)

Q. The total charge density is obtained by averaging the
polarization charge over the half the inner sphere’s surface which is in con-
tact with the dielectric. σpolarization =

Qpolarization

2πa2 . Therefore, the polarization
charge density is:

σpolarization = −
(

ǫ0 − ǫ

ǫ0 + ǫ

)

Q

2πa2

An alternative way of finding this result is to consider the polarization, ~P =
(ǫ − ǫ0) ~E. Jackson argues that σpolarization = ~P · ~n. But ~P points from the

dielectric outward at r = a, and σpolarization = −Pr = (ǫ0−ǫ)Er =
(

ǫ0−ǫ
ǫ0+ǫ

)

Q
2πa2

as before.
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Problem 5.1
Starting with the differential expression

d ~B =
µ0

4π
Id~ℓ′ ×

(

~r − ~r′

|~r − ~r′|3
)

for the magnetic induction at a point P with the coordinate ~x
produced by an increment of current Idℓ′ at ~x′, show explicitly that
for a closed loop carrying a current I the magnetic induction at P
is

~B =
µ0

4π
I ~∇Ω

where Ω is the solid angle subtended by the loop at the point P .
This corresponds to a magnetic scalar potential, ΦM = −µ0IΩ

4π
. The

sign convention for the solid angle is that Ω is positive if the point
P views the “inner” side of the surface spanning the loop, that
is, if a unit normal ~n to the surface is defined by the direction of
current flow via the right hand rule, Ω is positive if ~n points away

from the point P , and negative otherwise.
Biot-Savart’s law tells us how to find the magnetic field at some point P (~r)
produced by a wire element at some other point P2(~r′). At P (~r):

d ~B =
µ0

4π
Id~ℓ′ ×

(

~r − ~r′

|~r − ~r′|3
)

The total ~B-field at a point P is the sum of the d ~B elements from the entire
loop. So we integral d ~B around the closed wire loop.

~B =
∫

d ~B =
µ0

4π
I
∮

Γ
dℓ′ ×

(

~r − ~r′

|~r − ~r′|3
)

There is a form of Stokes’ theorem which is useful here:
∮

dℓ′ ×A =
∫

dS ′ ×
∇′ × A. I’ll look up a definitive reference for this someday; this maybe on
the inside cover of Jackson’s book.

∮

Γ
dℓ′ ×

(

~r − ~r′

|~r − ~r′|3
)

=
∫

dS ′ ×∇′ ×
(

~r − ~r′

|~r − ~r′|3
)

With the useful identity, ∇′f(x− x′) = ∇f(x′ − x), we have

dS ′ ×∇′ ×
(

~r − ~r′

|~r − ~r′|3
)

= dS ′ ×∇×
(

~r′ − ~r

|~r′ − ~r|3
)
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Now, with the use the vector identity, ~A× ( ~B × ~C) = (A · C) ~B − (A · B) ~C,
I can write the triple cross product under the integral as two terms. The
integral becomes

~B = −µ0

4π
I
∫

∇ ·
(

~r′ − ~r

|~r′ − ~r|3
)

d~S ′ +
µ0

4π
I
∫

~∇
[(

~r′ − ~r

|~r′ − ~r|3
)

· dS ′
]

But
(

~r′−~r
|~r′−~r|3

)

= ∇( 1
|~r−~r′|) and ∇2

(

1
|~r−~r′|

)

∝ δ(r′ − r). The first integral

vanishes on the surface where r′ does not equal r. Since I am free to choose
any area which is delimited by the closed curve Γ, I choose a surface so that
r′ does not equal r on the surface, and the first term vanishes. We are left
with

~B =
µ0

4π
I ~∇

∫

[(

~r′ − ~r

|~r′ − ~r|3
)

· dS ′
]

I take ∇ outside of the integral because the integral does not depend on r′,
as the integration does.
An element of solid angle is an element of the surface area, a ~A ·R̂, of a sphere
divided by the square of that sphere’s radius, R2, so that the solid angle has
dimension-less units (so called steradians). To get a solid angle, we integral
over the required area.

Ω =
∫

A

d ~A · (R̂)

R2
=
∫ ~R · d ~A

R3

And in our notation, this is

Ω =
∫

[(

~r′ − ~r

|~r′ − ~r|3
)

· d~S ′
]

Thus,
~B =

µ0

4π
I ~∇Ω

Where Ω is the solid angle viewed from the observation point subtended by
the closed current loop.
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Problem 5.9
A current distribution ~J(~x) exists in a medium of unit relative
permeability adjacent to a semi-indefinite slab of material having
relative permeability µr and filling the half-space, z < 0.
a. Show that for z > 0, the magnetic induction can be calculated
by replacing the medium of permeability µr by an image current
distribution, ~J∗, with components as will be derived.
Well, this problem is not too bad. Jackson solved this for a charge distri-
bution located in a dielectric ǫ1 above a semi-infinite dielectric plane with
ǫ2.

q∗ = −
(

ǫ2 − ǫ1
ǫ2 + ǫ1

)

q

q∗∗ =
(

2ǫ2
ǫ2 + ǫ1

)

q

With some careful replacements, we can generalize these to solve for the
image currents. We will consider point currents, whatever the Hell they are.
Physically, a point current makes no sense and violates the conservation of
charge, but mathematically, it’s useful to pretend such a thing could exist.
Associate each component of ~J(x, y, z) with q. Set ǫ1 → µ1 = 1 and ǫ2 →
µ2 = µ. These replacements give us the images modulo a minus sign.
For z > 0, we have to be careful about the overall signs of the image currents.
We can find the signs by considering the limiting cases of diamagnetism and
paramagnetism. That is when µ → 0, we have paramagnetism, and when
µ → ∞, we have diamagnetism. Let’s work with the diamagnetic case. The
image current will reduce the effect of the real current. Using the right hand
rule, we’d expect parallel wires to carry the current in the same direction for
this case. Therefore, we must have

~J∗
‖ =

(

µ− 1

µ+ 1

)

~J‖

The perpendicular part of the image current, on the other hand, must flow
in the opposite direction of the real current.

J∗
⊥ = −

(

µ− 1

µ+ 1

)

J⊥

We can understand this using an argument about mirrors. For the parallel
components, the image currents must be parallel and in the same direction
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for the diamagnetic case. Think of a mirror and the image of your right hand
in a mirror. If you move your right hand to the right, its image also moved
to the right. If it’s a dirty mirror, then a dim image of our hand moves to
the right. That’s exactly what we’d expect. The same direction current,
but smaller magnitude. For the perpendicular point current, we need an
opposite sign (anti-parallel) image current. This is not much more difficult
to visualize. Think of the image of your right hand in mirror. Move your
hand away from you, and watch its image move towards you!
If we had considered the paramagnetic case, the image currents would reverse
direction. This is because we now want the images to contribute to the fields
caused by the real currents. The sign flip changes two competing currents to
two collaborating currents.
b. Show that for z < 0 the magnetic induction appears to be due
to a current distribution [2µr/(µr +1)] ~J is a medium of unit relative
permeability.
For z < 0: Once again, we associate ~J with q to find ~J∗∗. Set µ1 = 1
and µ2 = µ. Notice that all the signs are positive. For the components of
the current parallel to the surface, this is exactly as expected. For the z
component, we have a reflection of a reflection or simply a weakened version
of the original current as our image; therefore, the sign is positive.

~J∗∗ =

(

2µ

µ+ 1

)

~J

To get a better understanding of the physics involved here, I will derive these
results using the boundary conditions. We are solving

∇× ~H = ~J

Which has a formal integral solution

~H =
µ0

4πµ

∫

d3~r′ ~J(r′) × |~r − ~r′|
|r − r′|3

But our Js are point currents, that is ~J ∝ δ(~r′−~a), so we can do the integral
and write

~H ∝ 1

µ
~I × (~r − ~a′)
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The cross product is what causes all the trouble. We will choose ~r = ±k̂,
~a′ = ĵ, ~I = Ixî+ Iy ĵ+ Izk̂, ~I

∗ = I∗x î+ I∗y ĵ+ I∗z k̂, and ~I∗∗ = I∗∗x î+ I∗∗y ĵ+ I∗∗z k̂.
Notice that I have not made any assumptions about the signs of the various
image current components. Then,

~H ∝ −(Iy + Iz )̂i+ Ixĵ + Ixk̂

~H∗ ∝ (I∗y − I∗z )̂i− I∗x ĵ + I∗xk̂

And
~H∗∗ ∝ 1

µ
(I∗∗y − I∗∗z )̂i− 1

µ
I∗∗x ĵ +

1

µ
I∗∗x k̂

We have the boundary conditions: 1.

~B2 · n̂ = ~B1 · n̂→ µ2
~H2 · n̂ = µ1

~H1 · n̂

And 2.
~H2 × n̂ = ~H1 × n̂

Note n̂ = k̂. From the first condition:

Ix + I∗x = I∗∗x

From the other condition, we find for the î component

−1

µ
I∗∗x = − (Ix − I∗x)

Solve simultaneously to find

I∗∗x =
2µ

µ+ 1
Ix

And

I∗x =
µ− 1

µ+ 1
Ix

By symmetry, we know that these equations still hold with the replacement
x→ y. We have one more condition left from the ĵ component.

−1

µ
(I∗∗y − I∗∗z ) = (Iz + I∗z ) − (Iy − I∗y )
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To make life easier, we’ll put Iy to zero. Then,

1

µ
I∗∗z = Iz + I∗z

I’m not sure how to get a unique solution out of this, but if I assume that
I∗∗z has the same form as I∗∗x , I find

I∗z =
1 − µ

µ+ 1
I
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Problem 6.11
A transverse plan wave is incident normally in a vacuum on a
perfectly absorbing flat screen.
a. From the law of conservation of linear momentum, show that
the pressure (called radiation pressure) exerted on the flat screen
is equal to the field energy per unit volume in the wave.
The momentum density for a plane wave is ~P = 1

c2
~S with the Poynting vector,

~S = 1
µ0

~E × ~B. The total momentum is the momentum density integrated
over the volume in question.

~p =
∫

~PdV ∼ ~PA dx x̂

The last step is true assuming ~P does not vary much over the volume in
question. Be aware that dV = Adx, the volume element in question. By
Newton’s second law, the force exerted in one direction (say x) is

Fx =
dpx

dt
=

d

dt
(PAdx) = PAdx

dt
= PAc

c is the speed of light. After all, electro-magnetic waves are just light waves.
We want pressure which is force per unit area.

~P =
~F

A
= ~Pc =

1

c
~S =

1

cµ0

~E × ~B

Take the average over time, and factor of one half comes in. We also know
that B0 = E0

c
. Then,

P =
1

2

1

µ0c2
(E0)

2

But c2 = 1
µ0ǫ0

, so

P =
1

2
ǫ0(E0)

2

We already know from high school physics or Jackson equation 6.106 that
the energy density is 1

2
( ~E · ~D + ~B · ~H) → 1

2
ǫ0(E0)

2 and wait that’s the same
as the pressure!

P =
1

2
ǫ0(E0)

2 = u
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This result generalizes quite easily to the case of a non-monochromatic wave
by the superposition principle and Fourier’s theorem.
b. In the neighborhood of the earth the flux of electro-magnetic
energy from the sun i approximately 1.4 kW/m2. If an interplane-
tary “sail-plane” had a sail of mass 1 g/m2 per area and negligible
other weight, what would be its maximum acceleration in meters
per second squared due to the solar radiation pressure? how does
this compare with the acceleration due to the solar “wind” (cor-
puscular radiation)?
Energy Flux from the Sun: 1.4 kW/m2

Mass/Area of Sail: 0.001 kg/m2

The force on the sail is the radiation pressure times the sail area. In part
a, we discovered that the electro-magnetic radiation pressure is the same as
the energy density. Thus, F = PA = uA. Now, by Newton’s law F = ma.
The energy density is Φ/c where Φ is the energy flux given off by the sun.
The acceleration of the sail is Φ

c
A
m

= 14000 ÷ (3 × 108) × 1000 = 4.6 × 10−3

m /sec2.
According to my main man, Hans C. Ohanian, the velocity of the solar wind
is about 400 km/sec. I’ll guess-timate the density of solar wind particles as
one per cubic centimeter (ρ = particles/volume∗mass/particle = 1.7×10−21

kg/m3). Look in an astro book for a better estimate.

∆p = PAv∆t

Clearly, P = ρv. The change in the momentum of the sail is thus a = 1
m

∆p
∆t

=
PAv/m = ρA

m
v2. Numerically, we find a = 2.7 × 10−9 m/sec2.

Evidently, we can crank more acceleration out of a radiation pressure space
sail ship than from a solar wind powered one.
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Problem 6.15
If a conductor or semiconductor has current flowing in it because
of an applied electric field, and a transverse magnetic field is ap-
plied, there develops a component of electric field in the direction
orthogonal to both the applied electric field (direction of current
flow) and the magnetic field, resulting in a voltage difference be-
tween the sides of the conductor. This phenomenon is known as
the Hall effect.
a. Use the known properties of electro-magnetic fields under ro-
tations and spatial reflections and the assumption of Taylor series
expansions around zero magnetic field strength to show that for
an isotropic medium the generalization of Ohm’s law, correct to
second order in the magnetic field, must have the form:

~E = ρ0
~J +R( ~H × ~J) + a2a

~H2 ~J + a2b( ~H · ~J) ~H

where ρ0 is the resistivity in the absence of the magnetic field and
R is called the Hall coefficient.
In Jackson section 6.10, Jackson performs a similar expansion for ~p. We’ll
proceed along the same lines.
The zeroth term is, a0

~J (Ohm’s law). This is the simplest combination of
terms which can still give us a polar vector.
Because ~E is a polar vector, the vector terms on the right side on the equation
must be polar. ~H is axial so it alone is not allowed, but certain cross products
and dot products produce polar vectors and are allowed. They are
First Order: a1( ~H × ~J)

Second Order:a2a( ~H · ~H) ~J + a2b( ~H · ~J) ~H

When ~H = 0, ~E = ρ0
~J so a1 = ρ0. And

~E = ρ0
~J +R( ~H × ~J) + a2a

~H2 ~J + a2b( ~H · ~J) ~H

I let a1 = R.
b. What about the requirements of time reversal invariance?
Under time reversal, we have a little problem. ~E and ρ0 are even but ~J
is odd. But then again if you think about it things really aren’t that bad.
Ohm’s law is a dissipative effect and we shouldn’t expect it to be invariant
under time reversal.
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Problem 6.16
a. Calculate the force in Newton’s acting a Dirac mono-pole of the
minimum magnetic charge located a distance 1

2
an Angstrom from

and in the median plane of a magnetic dipole with dipole moment
equal to one nuclear magneton.
A magnetic dipole, ~m = qh̄

2mp
, creates a magnetic field, ~B.

~B =
µ0

4π

[

3~n(~n · ~m) − ~m

|~x|3
]

Along the meridian plane, ~n · ~m = 0 so

~B = −µ0

4π

~m

|~x|3

Suppose this field is acting on a magnetic mono-pole with charge g = 2πh̄
q
n.

Where n is some quantum number which we’ll suppose to be 1. The force is

F = −µ0

4π

g|m|
|x|3 m̂

And the magnitude

|F | =
µ0

4π

gqh̄

2mpr3
=

µ0h̄
2

4mpr3
= 2 × 10−11Newtons

where we use r = 0.5 Angstroms.
b. Compare the force in part a with atomic forces such as the
direct electrostatic force between charges (at the same separation),
the spin-orbit force, the hyper-fine interaction. Comment on the
question of binding of magnetic mono poles to nuclei with magnetic
moments. Assume the mono-poles mass is at least that of a proton.
The electro static force at the same separation if given by Coulumb’s law.
|F | = 1

4πǫ0

q2

r
= 9.2 × 10−8 Newtons where I have used 1

4πǫ0
= 8.988 × 109

Nm2/C, q = 1.602 × 10−19 C, and r = 0.5 Angstroms. The fine structure is
approximately α = 1

137
times the Coulomb force, so we expect this contri-

bution to be about 7 × 10−10 Newtons. The hyperfine interaction is smaller
by a factor of me

mp
= 1

1836
, so Ffs ≃ 4 × 10−13 Newtons. I guess we should be

able to see the effects on magnetic mono-poles on nuclei if those mono-poles
exist. Unless of course mono-poles or super-massive. Or perhaps mono-poles
are endowed with divine attributes which make them terribly hard to detect.
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Problem 7.2
A plane wave is incident on a layered interface as shown in the
figure. The indices of refraction of the three non-permeable media
are n1,n2, and n3. The thickness of the media layer is d. Each of the
other media is semi-infinite. a. Calculate the transmission and re-

flection coefficients (ratios of transmitted and reflected Poynting’s
flux to the incident flux), and sketch their behavior as a function
of frequency for n1 = 1, n2 = 2, n3 = 3;n1 = 3, n2 = 2, n3 = 1; and
n1 = 2, n2 = 4, n3 = 1.
Look at the diagram. We have three layers of material labeled I,II, and III
respectively. Each layer has a corresponding index of refraction, n1, n2, and
n3. An electro-magnetic wave is incident from the left and travels through
the layers in the sequence I → II → III. Because this is an electro-magnetic
wave, we know ~k × N̂ = 0 and ~B · ~E = 0. That is the E and B fields are
perpendicular to the motion of the wave and are mutually perpendicular.
These are non-permeable media so µ1 = µ2 = µ3 = 1 and ni = n(ǫi) only.
To find the effective coefficient of reflection, we will consider closely what is
going on. The first interface can reflect the wave and contribute directly to
the effective reflection coefficient, or the interface can transmit the wave. The
story’s not over yet because the second interface can also reflect the wave. If
the wave is reflected, it will travel back to the first interface where it could
be transmitted back through the first interface. Or the wave could bounce
back. The effective reflection coefficient will be an infinite series of terms.
Each subsequent term corresponds to a certain number of bounces between
surface A and surface B before the wave is finally reflected to the left.

r = r12 + t12r23t21e
2ik2d + t12r23r21t21e

4ik2d + ...
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The first term corresponds to the reflection at the n1-n2 interface. The second
term is a wave which passes through the n1-n2 interface, reflects off the n2-n3

interface, and then transits through the n1-n2 interface. Higher order terms
correspond to multiple internal reflections.
Note the phase change over the internal reflection path. It is 2k2d for one
round trip from the n1-n2 to the n2-n3 interface and back. k2 is n2ω

c
. The

phase shift makes sense because the term in the exponent is really i~k · ~r and
the distance is ~r = ~d for the first leg. On the return leg, the sign of both
~k and ~d change because the wave is propagating backwards and over the
same distance in the opposite direction as before. The total phase change is
the product of these two changes and so ikd+ i(−k)(−d) = 2ikd. If you are
motivated, you could probably show this with matching boundary conditions.
I think this heuristic argument suffices.
I’ll write this series in a suggestive form:

r = r12 +
[

t12r23t21e
2ik2d

]

×
[

1 + r23r21e
2ik2d + (r23r21)

2e4ik2d + ...
]

The second term in the brackets is a geometric series:

∞
∑

n=0

xn =
1

1 − x
, x < 1

and I can do the sum exactly.

r = r12 +
[

t12r23t21e
2ik2d

]

[

1

1 − r23r21e2ik2d

]

You can obtain for yourself with the help of Jackson page 306:

rij =
ni − nj

ni + nj

=
ki − kj

ki + kj

And

tij =
2ni

ni + nj
=

2ki

ki + kj

With these formulae, I’ll show the following useful relationships:

r12 =
n1 − n2

n1 + n2
= −n2 − n1

n1 + n2
= −r21
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And

t12t21 =
(

2n1

n1 + n2

)(

2n1

n1 + n2

)

=
4n1n2

(n1 + n2)2

t12t21 = 1 − (n1 − n2)
2

(n1 + n2)2
= 1 + r12r21

Plug these into equation .

r = r12 +
(1 + r12r21)e

2ik2d

1 + r12r23e2ik2d
=

r12 + r23e
2ik2d

1 + r12r23e2ik2d

The reflection coefficient is R = |r|2.

R =
r2
12 + r2

23 + 2r12r23 cos(2k2d)

1 + 2r12r23 cos(2k2d) + (r12r23)2

And it follows from R+ T = 1 that

T =
1 − r2

12 − r2
23 + (r12r23)

2

1 + 2r12r23 cos(2k2d) + (r12r23)2

R+ T = 1 is reasonable if we demand that energy be conserved after a long
period has elapsed.
Now, here are all the crazy sketches Jackson wants:
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Problem 7.12
The time dependence of electrical disturbances in good conductors
is governed by the frequency-dependent conductivity (Jackson’s
equation 7.58). Consider longitudinal electric fields in a conductor,
using Ohm’s law, the continuity equation, and the differential form
of Coulomb’s law.
a. Show that the time-Fourier transformed charge density satisfies
the equation:

[σ(ω) − iωǫ0] ρ(ω) = 0

The continuity equation states

∇ · ~Jf = −∂ρf

∂t

From Ohm’s law, ~Jf = σ ~E so

∇ · ~Jf = ∇ · (σ ~Ef ) = σ∇ · ~Ef

The last step is true if σ is uniform. According to Coulumb’s law, ∇· ~E = ρ
ǫ0

.
We now have

∇ · ~J = σ∇ · ~E =
σ

ǫ0
ρ = −∂ρ

∂t

From now on, I’ll drop the subscript f . We both know that I mean free
charge and current. From the last equality,

σρ+ ǫ0
∂ρ

∂t
= 0 (1)

Assume that ρ(t) can be written as the time Fourier transform of ρ(ω). I.e.

ρ(t) =
1√
2π

∫

ρ(ω)e−iωtdω

Plug ρ(t) into equation 1.

1√
2π

∫

(

σρ(ω)e−iωt + ǫ0ρ(ω)
∂

∂t
e−iωt

)

dω = 0

For the integral to vanish the integrand must vanish so

[σ − iωǫ0] ρ(ω)e−iωt = 0
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For all t. We conclude that

[σ(ω) − iωǫ0] ρ(ω) = 0

b. Using the representation,

σ(ω) =
σ0

1 − iωτ

where σ0 = ǫ0ω
2
pτ and τ is a damping time, show that in the ap-

proximation ωpτ >> 1 any initial disturbance will oscillate with the
plasma frequency and decay in amplitude with a decay constant
λ = 1

2τ
. Note that if you use σ(ω) ≃ σ(0) = σ0 in part a, you will

find no oscillations and extremely rapid damping with the (wrong)
decay constant λw = σ0

ǫ0
.

From part a, σ(ω) − iǫ0ω = 0. Let ω = −iα so that

σ(ω) =
ǫ0ω

2
pτ

1 − ατ

And the result from part a becomes σ(ω) − ǫ0α = 0 →

ǫ0ω
2
pτ

1 − ατ
− ǫ0α = 0 → ǫ0ω

2
pτ − ǫ0α + α2τǫ0

1 − ατ
= 0

The numerator must vanish. Divide the numerator by τǫ0,

α2 − τ−1α + ω2
p = 0

Solve for α.

α =
1

2

[

τ−1 ±
√

τ−2 − 4ω2
p

]

If ωp >> 1, we can write α in an approximate form,

α ∼ (2τ)−1 ± iωp

The imaginary part corresponds to the oscillations at ωp, the plasma fre-
quency. The real part is the decay in amplitude 1

2τ
.
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Problem 7.16
Plane waves propagate in an homogeneous, non-permeable, but
anisotropic dielectric. The dielectric is characterized by a tensor
ǫij, but if coordinate axes are chosen as the principle axes, the
components of displacement along these axes are related to the
electric field components by Di = ǫiEi, where ǫi are the eigenvalues
of the matrix ǫij.

a. Show that plane waves with frequency ω and wave vector ~k must
satisfy

~k × (~k × ~E) + µ0ω
2 ~D = 0

Consider the second Maxwell equation, ∇× ~E = −∂ ~B
∂t

. Take the curl of both

sides. Plug in the fourth Maxwell equation for ∇× ~B.

∇× (∇× ~E) = −∇×




∂ ~B

∂t



 = − ∂

∂t



µ0
~J + µ0

∂ ~D

∂t





When ~J = 0 this becomes

∇×
(

∇× ~E
)

+
∂2

∂t2
~D = 0

Assume a solution of the form, ~E = ~E0e
i(~k·~r−ωt), and try it.

~k × (~k × ~E) + µ0ω
2 ∂

2

∂t2
~D = 0

Use
[

~k × (~k × ~E)
]

i
= ki(~k · ~E) − k2Ei = to write the double curl out in

expanded form.

ki(~k · ~E) − k2Ei + µ0ω
2 ∂

2

∂t2
Di = 0 (2)

Because Di = ǫijEj ,

ki(~k · ~E) − k2Ei + µ0ω
2 ∂

2

∂t2
ǫijEj = 0

Note ~D is not necessarily parallel to ~E.
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b. Show that for a given wave vector ~k = k~n there are two distinct
modes of propagation with different phase velocities v = ω

k
that

satisfy the Fresnel equation

3
∑

i=1

n2
i

v2 − v2
i

= 0

where vi = 1√
µ0ǫi

is called the principal velocity, and ni is the com-

ponent of ~n along the i-th principal axis.
We will write the result in part a as a matrix equation. The non-diagonal
elements of ǫij vanish so we replace ǫij → ǫiiδij. Define a second rank tensor,
↔
T , as

Tij = kikj −
(

k2 − ω2
i

c2
ǫ2ii

)

δij

The result in equation 2 can be written
↔
T · ~E = 0. In order for there to be a

nontrivial solution det
↔
T= 0. Divide

↔
T by k2 and use ki

|k| = ni to make things
look cleaner

Tij/k
2 = ninj −

(

1 − ω2

k2c2
ǫ2ii

)

δij

We remember the relations v = ω
k

and vi = c√
ǫii

. So we have

Tij/k
2 = ninj −

(

1 − v2

v2
i

)

δij

At this point, we can solve det
↔
T= 0 for the allowed velocity values.

det











n2
1 − (1 − v2

v2
1

) n2n1 n3n1

n1n2 n2
2 − (1 − v2

v2
2

) n3n2

n1n3 n2n3 n2
3 − (1 − v2

v2
3

)











= 0

Or written out explicitly, we have
(

v2

v2
1

− 1

)(

v2

v2
2

− 1

)(

v2

v2
3

− 1

)

+n2
1

(

v2

v2
1

− 1

)(

v2

v2
2

− 1

)(

v2

v2
3

− 1

)
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+n2
2

(

v2

v2
1

− 1

)(

v2

v2
2

− 1

)(

v2

v2
3

− 1

)

+n2
3

(

v2

v2
1

− 1

)(

v2

v2
2

− 1

)(

v2

v2
3

− 1

)

= 0

Multiplying out the determinant,
(

v2

v2
1

− 1

)(

v2

v2
2

− 1

)(

v2

v2
3

− 1

)

+ n2
1

(

v2

v2
2

− 1

)(

v2

v2
3

− 1

)

+n2
2

(

v2

v2
3

− 1

)(

v2

v2
1

− 1

)

+ n2
3

(

v2

v2
1

− 1

)(

v2

v2
2

− 1

)

= 0

which can be written in a nicer form.

1 +
n2

1v
2
1

v2 − v2
1

+
n2

2v
2
2

v2 − v2
2

+
n2

3v
2
3

v2 − v2
3

= 0

Use n2
1 + n2

2 + n3
3 = 1 to replace the number one in the above equation.

n2
1(v

2 − v2
1)

v2 − v2
1

+
n2

2(v
2 − v2

2)

v2 − v2
2

+
n2

3(v
2 − v2

3)

v2 − v2
3

+
n2

1v
2
1

v2 − v2
1

+
n2

2v
2
2

v2 − v2
2

+
n2

3v
2
3

v2 − v2
3

= 0

Simplify. In the end, you’ll obtain a relationship for the v values.

n2
3(v

2 − v2
1)(v

2 − v2
2) + n2

1(v
2 − v2

3)(v
2 − v2

2) + n2
2(v

2 − v2
3)(v

2 − v2
1) = 0

This is quadratic in v2 so we expect two solutions for v2. Divide by (v2 −
v2
1)(v

2 − v2
2)(v

2 − v2
3) and write in the compact form which Jackson likes:

3
∑

i=1

n2
i

v2 − v2
i

= 0

c. Show that ~Da · ~Db = 0, where ~Da, ~Db are displacements associated
with two modes of propagation.
Divide the equation 2 by k2 to find the equations which the eigenvectors
must satisfy:

~E1 − ~n(~n · ~E1) =
v2
1

c2
~D1 (3)

54



And

~E2 − ~n(~n · ~E2) =
v2
2

c2
~D2 (4)

Dot the first equation by E2 and the second by E1.

~E2 · ~E1 − ( ~E2 · ~n)(~n · ~E1) =
v2
1

c2
~E2 · ~D1

And

~E2 · ~E1 − ( ~E2 · ~n)(~n · ~E1) =
v2
2

c2
~E1 · ~D2

Comparing these, we see that

v2
1
~E2 · ~D1 = v2

2
~E1 · ~D2

Well, we already know that in general v1 6= v2. So ~E2 · ~D1 and ~E1 · ~D2 must
either vanish or be related in such a way as to preserve the equality. However,
~E2 · ~D1 = ~E1 · ~D2 because ǫij is diagonal. Then, ǫijE1iE2jδij = ǫijE2jE1iδij .

Therefore, we must conclude that ~E2 · ~D1 = ~E1 · ~D2 = 0.
Dot product equation 3 into 4 and find

~E2 · ~E1 + (n̂ · ~E1)(n̂ · ~E2) − 2(n̂ · ~E1)(n̂ · ~E2) =
v2
1v

2
2

c4
~D2 · ~D1

The left hand side can be rewritten as ~E2 · ~E1 − ( ~E2 · ~n)(~n · ~E1) ∝ ~E1 · ~D2

which we have shown to vanish. Therefore, the left hand side is zero, and
the right hand side, ~D1 · ~D2 = 0. The eigenvectors are perpendicular.
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Problem 7.22
Use the Kramers-Krönig relation to calculate the real part of ǫ(ω),
given the imaginary part of ǫ(ω) for positive ω as . . .
The Kramer-Krönig relation states:

ℜ
(

ǫ(ω)

ǫ0

)

= 1 +
2

π
P
∫ ∞

0

ω′

ω′2 − ω2
ℑ
(

ǫ(ω′)

ǫ0

)

dω′

a. ℑ
(

ǫ(ω)
ǫ0

)

= λ [Θ(ω − ω1) − Θ(ω − ω2)].
Plug this into the Kramer-Kronig relationship.

ℜ
(

ǫ(ω)

ǫ0

)

= 1 +
2λ

π

∫ ω2

ω1

ω′

ω′2 − ω2
dω′ + 0

Notice that the real part of ǫ(ω) depends on an integral over the entire
frequency range for the imaginary part!
Here, we will use a clever trick.

ℜ
(

ǫ(ω)

ǫ0

)

= 1 +
λ

π

∫ ω2
2

ω2
1

d(ω′2)

ω′2 − ω2

And this integral is easy to do!

ℜ
(

ǫ(ω)

ǫ0

)

= 1 +
λ

π
ln
(

ω′2 − ω2
)

|ω
2
2

ω2
1

= 1 +
λ

π
ln

(

ω2
2 − ω2

ω2
1 − ω2

)

b. ℑ
(

ǫ(ω)
ǫ0

)

= λγω
(ω2

0
−ω2)+γ2ω2

Do the same thing.

ℜ
(

ǫ(ω)

ǫ0

)

= 1 +
2

π
P
∫ ∞

0

λγω′2

((ω2
0 − ω2)2 + γ2ω2) (ω′2 − ω2)

dω′

The integral can be evaluated using complex analysis, but I’ll avoid this. The
integral is just a Hilbert transformation and you can look it up in a table.

ℜ
(

ǫ(ω)

ǫ0

)

= 1 +
λ(ω2

0 − ω2)

(ω2
0 − ω2)2 + ω2γ2
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Problem 9.3
A radiating
V (t) = V0 cos(ωt). There should be a diagram showing a sphere split across
the equator. The top half is kept at a potential V (t) while the bottom half
is −V (t). From Jackson 9.9,

lim
kr→∞

~A(~x) =
µ0

4π

eikr

r

∑

n

(−ik)n

n!

∫

~J(~x′)(n · ~x′)ndV ′

If kd = k2R << 1 (as it is), the higher order terms in this expansion fall off
rapidly. In our case, it is sufficient to consider just the first term.

~A(~x) =
µ0

4π

eikr

r

∫

~J(~x′)dV ′

Integrating by parts and substituting ∇ · ~J = iωρ, we find

~A =
−iµ0ω

4π
~p
eikr

r

I solved the static situation (but neglected to include it) earlier.

Φ = V

[

3

2

(

R

r

)2

P1(cos θ) − 7

8

(

R

r

)4

P3(cos θ) +
11

16

(

R

r

)6

P5(cos θ) + ...

]

Written a different way, this is

Φ =
1

4πǫ0

Q

r
+

1

4πǫ0

~p · ~x
r3

+ ...

Choose the z-axis so that ~p · ~x = pr cos θ. Compare like terms between the
two expressions for Φ to find the dipole moment in terms of known variables.

V
3

2

(

R

r

)2

cos θ =
1

4πǫ0

pr cos θ

r3

So

|p0| =
3

2
4πǫ0V0R

2

The time dependent dipole moment is

~p(t) = 6πǫ0V0R
2 cos(ωt)ẑ
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And with this,

~A =
−iµ0ω

4π

eikr

r
p0ẑ

In the radiation zone, Jackson said that

~H =
ck2

4π
(~n× ~p)

eikr

r

And

~E =

√

µ0

ǫ0
~H × n̂

Some texts will use z0 =
√

µ0

ǫ0
; I don’t. First, find the magnetic field. Use

ω = kc.

~B = µ0
~H = −µ0p0ω

2

4πc

(

sin θ

r

)

eikrφ̂

Then, find the electric field.

~E =
µ0p0ω

2

4π

(

sin θ

r

)

eikrθ̂

The power radiated per solid angle can be obtained from the Poynting vector.

dP

dΩ
=

r2

2µ0

| ~E∗ × ~B| =
µ0

2c

[

p2
0ω

2

16π2
sin2 θ

]

r̂

Notice how the complex conjugation and absolute signs get rid of the pesky
wave factors.
Integrate over all solid angles to find the total radiated power.

PTotal =
∫

µ0

2c

[

p2
0ω

2

16π2
sin2 θ

]

dΩ =
µ0p

2
0ω

4

16πc

∫ π

0
sin3 θdθ

The final integral is quite simple, but I’ll solve it anyway.
∫ π

0
sin3 θdθ =

−1

3
cos θ

(

sin2 θ + 2
)

|πθ=0

Putting all this together, the final result is

PTotal =
3πǫ0V

2
0 R

4ω4

c3
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Problem 9.10
The transitional charge and current densities for the radiative tran-
sition from the excited state m = 0, 2p in hydrogen to the ground
state 1s, i.e.

|H ; 2p〉 → |1s〉
are, in the notation of (9.1) and with the neglect of spin, the matrix
elements, 〈2p|ρ̂|1s〉:

ρ(r, θ, φ, t) =
2q√
ba4

0

re
− 3r

2a0 Y00Y10e
−iωt

We also know the current density.

~J(r, θ, φ, t) = −iv0

(

r̂

2
+
a0

z
ẑ

)

ρ(r, θ, φ, t)

where a0 = 4πǫ0h̄2

me2 = 0.529 × 10−19 m is the Bohr radius, ω0 = 32

32πǫ0h̄a0

is the frequency difference of the levels, and v0 = e2

4πǫ0h̄
= αc ≈ c

137
is

the Bohr orbit speed.
a. Find the effective transitional “magnetization”, calculate ∇ · ~M ,
and evaluate all the non-vanishing radiation multi-poles in the long-
wavelength limit.
The magnetization is

~M =
1

2
(~r × ~J)

~J can be broken up into Jr and Jz components. We take the cross product
of the two components with ~r.

~r × Jr = 0

And

~r × Jz = −iv0

(−x
z
ŷ +

y

z
x̂
)

a0ρ

To make things easier, we’ll use angles. tan θ = r
z
, sinφ = y

r
, cosφ = x

r
Then,

~r × ~J = −ia0ρv0 (tan θ sinφx̂− tan θ cosφŷ)
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Don’t forget v0 = αc, so

~M = −iαca0

2
tan θ(sin φx̂− cos φŷ)ρ

Let ~χ = −iαca0

2
tan θ(sinφx̂− cos φŷ) then

~M = ρ~χ

Now, we take the divergence.

∇ · ~M = (∇ · ~χ)ρ+ ~χ · ∇ρ

We’ll consider each term separately to show that they all vanish. First of all,

∇ · χ ∼ ∇ · (y
z
x̂− x

z
ŷ) = 0

Now since ρ ∼ re
−3r
2a0 cos θ = ze

−3r
2a0 , its gradient is

∇ρ = ze
−3r
2a0

[−3x

2a0r
x̂+

−3y

2a0r
ŷ +

(

1

z
− 3z

2a2r

)

ẑ
]

Which is orthogonal to χ

χ · ∇ρ ∼ yx

r
− xy

r
= 0

Both terms in the divergence vanish, and ∇ ~M = 0.
The dipole moment is

~p =
∫

(xx̂+ yŷ + zẑ) ρ(~x)dV

Don’t forget

ρ(~x) = κze
−3

2a0

√
x2+y2+z2

where κ = 2q√
6a4

0

1√
4π

√

3
4π

. Putting this together,

~p =
∫

z(xx̂+ yŷ + zẑ)κe
−3r
2a0 dV
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Obviously,
∫ ∞

−∞
ue−f(u)du = 0

if f(u) is even. Thus, the integrals over the x and y coordinates vanish. We
are left with

~p = κẑ
∫ ∞

−∞
z2e

−3r
2a0 dV = 2πκẑ

(∫

r4e−3r2a0dr
)(∫

cos2 θd(cos θ)
)

Use
∫ ∞

0
rne−βrdr =

n!

βn+1
→
∫ ∞

0
r4e−βrdr =

4!

β5

And
∫ 1

−1
cos2 θd(cos θ) =

2

3

To get

~p = κẑ
(

24

35
25a5

0

)(

2

3

)

(2π)

Plug in κ explicitly.
~p = 1.49qa0ẑ

Now, for the magnetic moment,

~m =
∫

~MdV =
−ia0v0

2

∫

ρ(
y

z
x̂− x

z
ŷ)

Well, ρ is even but y and x are odd so ~m is zero. The magnetic dipole and
electric quadrapole terms vanish because of their dependence on m.
We suspect that electric octo-pole and every other pole thereafter might
persist because of symmetry, but we won’t worry about that.
b. In the electric dipole approximation calculate the total time-
averaged power radiated. Express your answer in units of (h̄ω0)

(

α4c
a0

)

.

P =
c2z0k

4

12π
~p2

where z0 = 1
ǫc

. Now, h̄α = q2

4πǫ0c
. With some fiddling,

PJackson = 3.9 × 10−2(h̄ω0)

(

α4c

a0

)
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c. Interpreting the classically calculated power as the photon en-
ergy times the transition probability, evaluate numerically the tran-
sition probability in units of reciprocal seconds.
h̄ωΓ = P . Using numbers, Γ = 6.3 × 108 seconds−1.
d. If, instead of the semi-classical charge density used above, the
electron in the 2p state was described by a circular Bohr orbit of
radius 2a0, rotating with the transitional frequency ω0, what would
the predicted power be? Express your answer in the same units as
in part b and evaluate the ratio of the two powers numerically.
For a Bohr transition, a dipole transition,

~p = q(2a0 − a0)ẑe
−iωt = qa0e

−iωtẑ

which gives an emitted power of PBohr = 0.018(h̄ω0)
(

α4c
a0

)

. And the ratio:

PBohr

PJackson
≃ 0.45

The grader claims that this is incorrect citing a correct value of 0.55. You
decide, and tell me what you conclude.
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Figure 1:

Problem 9.16
A thin linear antenna of length d is excited in such a way that the
sinusoidal current makes a full wavelength of oscillation as shown
in some Jacksonian figure.
a
¯
. Calculate exactly the power radiated per unit solid angle and plot the

angular distribution of radiation.
Assume the antenna is center fed.

~J = I0 sin
(

1

2
kd− k|z|

)

δ(x)δ(y)e−iωtẑ, |z| ≤ 1

2
d

Note J(±d
2
) = 0 as makes sense. Jackson makes some arguments to justify

this current density for a center fed antenna. I’ll take his word for it, but if
you’re not convinced, consult Jackson page 416 in the third edition.
The vector potential due to an oscillating current is

~A(~r) =
µ0

4π

∫

~J(~r, t)
eik|~r−~r′|

|~r − ~r′|d
3~r′

In the radiation zone,
eik|~r−~r′|

|~r − ~r′| →
eikr

r
e−ik ~r·~r′

r

The vector potential with the current density can be explicitly written

~A(~r) =
µ0

4π

eikr

r
ẑ
∫ d

2

− d
2

I0 sin
(

1

2
kd− k|z|

)

e−ikz′ cos θdz′ẑ
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Bear in mind that this expression for the vector potential includes all multi-
poles. The integral can be done quite easily. Use Euler’s theorem, e−ix =
cosx− i sin x→ sin x = ex−e−x

2i
, to write:

I1 =
∫

1

2i

(

ei 1

2
kd−ik|z′| − e−i 1

2
kd+ik|z|

)

e−ikz′ cos θdz′ẑ

Written out in full,

I1 =
1

2i
ei 1

2
kd
∫ d

2

0
e(−ik−ik cos θ)z′dz′ − 1

2i
e−i 1

2
kd
∫ d

2

0
e(ik−ik cos θ)z′dz′

+
1

2i
ei 1

2
kd
∫ 0

− d
2

e(ik−ik cos θ)z′dz′ − 1

2i
e−i 1

2
kd
∫ 0

− d
2

e(−ik−ik cos θ)z′dz′

Each integral can be solved quite easily by “ u ” substitution.

I1 =
1

2i
ei 1

2
kd 1 − e(−ik−ik cos θ)d

2

(k + ik cos θ)
+

1

2i
ei 1

2
kd 1 − e(−k+ik cos θ)d

2

(ik − ik cos θ)

+
1

2i
e−i 1

2
kd 1 − e(−ik+ik cos θ)d

2

(ik − ik cos θ)
+

1

2i
e−i 1

2
kd 1 − e(ik+ik cos θ)d

2

(ik + ik cos θ)

The result is a mess. Use Maple or have patience. It takes a bit of algebra
to get the neat result,

I1 =
2

k

[

cos(1
2
kd cos θ) − 1

2
cos(kd)

sin2θ

]

And then,

~A(~r) =
2µ0

4π

eikr

kr

[

cos(1
2
kd cos θ) − 1

2
cos(kd)

sin2 θ

]

ẑ

Who cares about the vector potential? We want E and B fields. Fortunately,
we know how to write the E and B fields in the radiation zone in terms of
the vector potential.

~B = ikr̂ × ~A→ | ~B0| = k sin θ| ~A0|φ̂

~E = ick(r̂ × ~A) × r̂ → | ~E0| = ck sin θ| ~A0|θ̂
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The time averaged angular distribution of power is

dP

dΩ
=

r2

2µ0

| ~E × ~B∗| =
1

2µ0

ck2 I
2
0

k2

(

2µ0

4π

)2
[

cos(1
2
kd cos θ) − 1

2
cos kd

sin θ

]2

dP

dΩ
=

2µ0I
2
0c

16π2

[

cos(1
2
kd cos θ) − 1

2
cos kd

sin θ

]2

In this problem λ = d so kd = 2π
λ
d = 2π.

dP

dΩ
=

2µ0I
2c

16π2

[

cos(π cos θ) − 1
2
cosπ

sin θ

]2

Well, cosπ = −1, and of course, cosα + 1
2

= 2 cos2(α
2
).

dP

dΩ
=

8µ0I
2c

16π2

[

cos4(1
2
π cos θ)

sin2 θ

]

b. Determine the total power radiated and find a numerical value
for the radiation resistance.
Integrate the result from part a over all solid angles.

Ptotal =
∫

dP

dΩ
dΩ =

µ0I
2c

2π2

∫

[

cos4(1
2
π cos θ)

sin2 θ

]

dΩ

Integrating over φ,

Ptotal =
µ0I

2c

π

∫

[

cos4(1
2
π cos θ)

sin2 θ

]

sin θdθ

Obviously3, the integral equals about 0.84.

P = (0.84)
I2
0µ0c

π

We learned in high school that P = I2R and it does take much to show
R = P

I2 = µ0c
8π

(6.7) ≈ 100Ω. Here, Ω stands for Ohms. Actually, Jackson
seems to define the radiative resistance as 2 times this, but typically Jackson
is hard to follow so I’ll ignore this factor without a better explanation about
its origin.

3Solve the integral numerically.
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Problem 9.17
Treat the linear antenna of Problem 9.16 by the multi-pole expan-
sion method.
Until further notice: the units in this problem are inconsistent. check them!
a. Calculate the multi-pole moments (electric dipole, magnetic
dipole, and electric quadrupole) exactly and in the long wavelength
approximation.
For a linear antenna:

~J(~r) = ẑ sin(kz)δ(x)δ(y)I0

Use the multi-pole expansion.

lim
kr→∞

~A(~x) =
µ0

4π

eikr

r

∑

n

(−ik)n

n!

∫

~J(~x′)(n · ~x′)ndV ′

For n=1 in the expansion, we find the electric dipole contribution:

~A =
µ0

4π

eikr

r

∫

~J(~r′)dV ′ =
µ0

4π

eikr

r
ẑI0

∫ d
2

− d
2

sin(kz′)dz′ = 0

When n=2 in the expansion, we get a term proportional to the integral of
~J (~n · ~r′). Using the vector identities, this can be rewritten in terms of the
magnetic dipole and electric quadrapole contributions. The magnetic dipole
contribution is:

~A = −µ0

4π

eikr

r

ik

2

∫

(~r′ × ~J(~r′)) × ~ndV ′ = 0

The electric quadrapole contribution is:

~A = −µ0

4π

eikr

r

ik

2

∫

[

(~n · ~r′) ~J(~r′) + (~n · ~J(~r′))~r′
]

dV ′

= −µ0

4π

eikr

r

ik

2
ẑI0

∫ d
2

d
2

[z′ cos θ sin(kz′) + cos θ sin(kz′)z′] dz′

= −µ0

4π

eikr

r
ikẑI0 cos θ

∫

z′ sin(kz′)dz′ =
µ0

4π

eikr

r
ikẑI0 cos θ

∂

∂k

∫

cos(kz′)dz′

=
µ0

4π

eikr

r
2ikẑI0 cos θ

∂

∂k

(

sin(kd
2

)

k

)

=
µ0

4π

eikr

r
2ikẑI0 cos θ

(

d

2k
cos

(

kd

2

)

− 1

k2
sin

(

kd

2

))
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b. Compare the shape of the angular distribution of radiated power
for the lowest non-vanishing multi-pole with the exact distribution
of Problem 9.16.
We were given kd = 2π so

~A = −µ0

4π
id
eikr

r
ẑI0 cos θ

And the power per solid angle

dP

dΩ
=

r2

2µ0
| ~E × ~B|

But ~B = ik ~A sin θ and ~E = ic ~A sin θ so

dP

dΩ
=
cr2k2

2µ0
| ~A|2 sin2 θ =

cµ0k
2d2I2

0

32π2
cos2 θ sin2 θ =

cµ0I
2
0

8
cos2 θ sin2 θ

c. Determine the total power radiated for the lowest multi-pole
and the corresponding radiation resistance using both multi-pole
moments from part a. compare with problem 9.16 b; is there a
paradox here?

P =
∫

dP

dΩ
dΩ =

cµ0I
2
0

8
(2π)

∫ 1

−1
cos2(θ) sin2(θ)d(cos θ) =

cµ0πI
2
0

15

Evaluate the integral as follows:
∫ 1

−1
cos2(θ) sin2(θ)d(cos θ) =

∫ 1

−1
cos2(θ)

(

1 − cos2(θ)
)

d(cos θ)

Let cos θ = x.
∫ 1

−1
(x2 − x4)dx =

x3

3
− x5

5
|1x=−1 =

4

15

In circuit analysis, we can write the power dissipated as

P = RI2
0

Plug in the power radiated and solve for R.

R =
cµ0π

15
= 155Ω

No paradox because interference of higher multi-poles is possible.
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Bonus Section: Broadcasting Westward
A professor posed once posed this question to me:
Suppose you had a city on the western shore of a large lake and that
you are commissioned to design an antenna arrangement which
would broadcast westward over the suburbs and waste as little
power as possible by not broadcasting over the lake. Can this be
done? How?
Obviously, by asking how, I have given you the answer to the first part.
It’s a bit difficult to understand the solution without diagrams so I’ll put
some diagrams here later. Position two antenna along the east-west axis and
separate them by a distance λ

4
. Now, delay the westward antenna by λ

4
.

Here’s what happens. The signal first appears at the eastern antenna. It
propagates outward in all directions. When the pulse has traveled λ

4
west-

ward, it passes the other antenna. At this moment, the second antenna emits
the delayed signal. Both signals propagate in phase westwardly and so con-
structively interfere. Things are different on the eastward direction. By the
time the second pulse reaches the first antenna the two signals are λ

2
out

of phase and will destructively interfere. Thus, the eastward signal will be
greatly diminished. According to the prof. who asked me this question, this
is roughly the set up atop the Sears tower in Chicago.
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Problem 10.1
a. Show that for an arbitrary initial polarization, the scattering
cross section of a perfectly conducting sphere of radius a, summed
over outgoing polarizations, is given in the long-wavelength limit
by

(

dσ

dΩ

)

Tot

= k4a6
[

5

4
− [ǫ0 · n]2 − 1

4
[n · (n0 × ǫ0)]

2 − n0 · n
]

where n0 and n are the directions of the incident and scattered
radiations, respectively, while ǫ0 is the (perhaps complex) unit po-
larization vector of the incident radiation (ǫ∗0 · ǫ0 = 1; n · ǫ0 = 0).
O.K. This problem’s a monster, a veritable Ungeheuer ! The basic idea behind
the problem is simple, and a college freshman with knowledge of high school
algebra and a vague idea of how to manipulate vectors could quite conceivably
solve this. Notwithstanding, the algebra is horrible, and algebra has been
know to topple even the greatest physicists.
First, we will drop the vector notation. It should be obvious that all the n’s
and all the ǫ’s are unit vectors.
a. An unpolarized beam is scattered by a conducting sphere of radius a.
From the text,

dσ

dΩ
= k4a6

[

ǫ̂∗out · ǫ̂0 −
1

2
(n× ǫ̂∗out) · (n0 × ǫ̂0)

]2

It is a bit easier to work with dot products instead of cross products. Use
the vector identity,( ~A× ~B) · ( ~C× ~D) = ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C), to get

dσ

dΩ
= k4a6

[

(ǫ̂∗out · ǫ̂0)
[

1 − 1

2
(n · n0)

]

+
1

2
(n · ǫ̂0)(ǫ̂∗out · n0)

]2

(5)

Look at Jackson’s diagram which I have included for convenience here. Notice
that n0 · n = cos θ.
First, construct an orthonormal basis. The most obvious unit vectors to use
are one parallel to the incident wave vector,

n0

one perpendicular to the scattering plane,

n× n0

sin θ
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Figure 2: Jackson’s insightful diagram.

and the third orthogonal to the first two,

n− (n · n0)n0

sin θ

In case it is not obvious, the Graham-Schmidt process gave me the third
vector. You can check for yourself to see that these vectors are orthogonal
and normalized (v̂ · v̂ = 1). The vector identity given earlier is useful for this.
The most general incident scattering wave polarization can be written in
terms of these three unit vectors.

ǫ0 = A
(

n× n0

sin θ

)

+B (n0) + Γ

(

n− (n · n0)n0

sin θ

)

And the most general scattered wave polarization vector can be expressed in
terms of the same orthogonal basis.

ǫ∗out = ǫ∗⊥(1)

(

n× n0

sin θ

)

+ ǫ∗‖(1) (n0) + ǫ∗‖(2)

(

n− (n · n0)n0

sin θ

)

The parallel and perpendicular symbols refer to the polarizations orientation
with respect to the scattering plane. We will use the following later:

ǫ̂∗⊥ = ǫ∗⊥(1)

(

n× n0

sin θ

)
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And

ǫ∗‖ = ǫ∗‖(1) (n0) + ǫ∗‖(2)

(

n− (n · n0)n0

sin θ

)

Proceed by determining the coefficients for the incident wave. We do this
be doting the incident wave vector by our basis vectors. Remember that
Jackson gives us n0 · ǫ̂0 = 0. We realize immediately that B = 0. The other
components are

Γ = ǫ̂0 ·
[

n− (n · n0)n0

sin θ

]

=
1

sin θ
[n · ǫ̂0 − (n · n0)(n0 · ǫ̂0)] =

1

sin θ
n · ǫ̂0

And

A = ǫ̂0 ·
n× n0

sin θ

Calculate the scattering cross section for an arbitrarily polarized beam is
done with the average of the incoming polarization and then the sum of the
outgoing polarizations. That means that the total cross section is the sum
of the cross sections for the two final polarization states. These states corre-
spond to polarizations perpendicular and parallel to the scattering plane.

(

dσ

dΩ

)

Tot

=

(

dσ

dΩ

)

‖
+

(

dσ

dΩ

)

⊥

In order to evaluate the cross sections, it will be helpful to know the following
first: ǫ∗‖ ·ǫ0, ǫ∗⊥ ·ǫ0, n×ǫ∗‖, n×ǫ∗⊥, and n0×ǫ0. Rewrite the incident polarization
by putting Γ and A in explicitly.

ǫ0 =
1

sin2 θ
(n · ǫ0)[n− (n0 · n)n0] +

1

sin2 θ
[(n0 × n) · ǫ0](n0 × n)

Now, take the relevant dot products.

(n · ǫ̂0) =
n · ǫ̂0
sin2 θ

[1 − (n0 · n)2] =
n · ǫ̂0
sin2 θ

(1 − cos2 θ) = n · ǫ̂0

And

ǫ∗‖ · ǫ0 =
1

sin2 θ
[−(n · ǫ̂0)(ǫ̂∗ · n0)(n0 · n)] =

1

sin θ
(n · ǫ̂0)(n0 · n)
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And

ǫ∗⊥ · ǫ0 =
1

sin2 θ
[ǫ̂∗⊥ · (n0 × n)][(n0 × n) · ǫ̂0] =

1

sin θ
[(n0 × n) · ǫ̂0]

We can also find
ǫ‖

∗ · n0 = − sin θ

ǫ⊥
∗ · (n0 × n) = sin θ

Now, we have all the dot products needed to find the cross sections.
For the parallel case, the scattering cross section is equation 5 with only ǫ̂‖
in the final polarization.

(

dσ

dΩ

)

‖
= k4a6

[

(ǫ∗‖ · ǫ0)[1 − 1

2
(n · n0)] +

1

2
(n · ǫ0)(ǫ∗‖ · n0)

]2

= k4a6
[

1

sin θ
(n · ǫ̂0)(n0 · n)[1 − 1

2
(n0 · n)] +

1

2
(n · ǫ̂0)[− sin θ]

]2

= k4a6

[

(n · ǫ̂0)
cos θ − 1

2
(cos2 θ + sin2 θ)

sin θ

]2

= k4a6

[

(n · ǫ̂0)
cos θ − 1

2

sin θ

]2

For the perpendicular case, we do the same as above but instead of ǫ̂‖, we
have ǫ̂⊥ in the final polarization.

(

dσ

dΩ

)

⊥
= k4a6

[

(ǫ∗⊥ · ǫ0)[1 − 1

2
(n · n0)] +

1

2
(n · ǫ̂0)(ǫ̂∗⊥ · n0)

]2

= k4a6
[

(ǫ̂∗⊥ · ǫ̂0)[1 − 1

2
(n · n0)]

]2

= k4a6
[

1

sin θ
[(n0 × n) · ǫ̂0]

[

1 − 1

2
n0 · n

]]2

= k4a6

[

[(n0 × n) · ǫ̂0]
1 − 1

2
cos θ

sin θ

]2

We add these to get the total cross section.
(

dσ

dΩ

)

Tot

=
k4a6

sin2 θ

[

[n · ǫ̂0]2[cos θ − 1

2
]2 + [(n0 × n) · ǫ̂0]2[1 − 1

2
cos θ]2

]
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Multiply out the squares.

(

dσ

dΩ

)

Tot

=
k4a6

sin2 θ

[

[n · ǫ̂0]2[(cos2 θ − 1) − cos θ +
5

4
]
]

+
k4a6

sin2 θ

[

[(n0 × n) · ǫ̂0]2[
1

4
(cos2 θ − 1) +

5

4
− cos θ]

]

And then, with some algebra,

(

dσ

dΩ

)

Tot

= k4a6

[

−[n · ǫ̂0]2 −
1

4
[(n0 × n) · ǫ̂0]2 +

5
4
− cos θ

1 − cos2 θ
([n · ǫ̂0]2 + [(n0 × n) · ǫ̂0]2)

]

Recall that we were given

ǫ∗0 · ǫ0 = 1 → 1 = [ǫ0‖]
2 + [ǫ0⊥]2

This means that

1

sin2 θ
[n · ǫ̂0]2 +

1

sin2 θ
[(n0 × n) · ǫ̂0]2 = 1

Finally, we can report the total cross section.

(

dσ

dΩ

)

Tot

= k4a6
[

5

4
− [ǫ0 · n]2 − 1

4
[n · (n0 × ǫ0)]

2 − n0 · n
]

(6)

Where we replaced cos θ with n0 · n.
b. If the incident radiation is linearly polarized, show that the
cross section is

(

dσ

dΩ

)

= k4a6
[

5

8
(1 + cos2 θ) − cos θ − 3

8
sin2 θ cos 2φ

]

where n ·n0 = cos θ and the azimuthal angle φ is measured from the
direction of the linear polarization.
It is a simple matter of geometry to determine the following dot and cross
products. I’ll give you a diagram someday, but for now, you’ve got to draw
this one yourself.

ǫ0 · n = sin φ sin θ

n · (n0 × ǫ0) = ǫ0 · (n× n0) = ǫ0 · v̂ sin θ = sin θ cos φ
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Once we have these products, part b is simply a matter of trigonometric
formulae and algebraic manipulations. Consider the term in brackets from
equation 6, and write the newly revealed angles in.

[

5

4
− [ǫ0 · n]2 − 1

4
[n · (n0 × ǫ0)]

2 − n0 · n
]

=
[

5

4
− sin2 φ sin2 θ − 1

4
sin2 θ cos2 φ− cos θ

]

I’m going to fly through this algebra. To start off, I will use cos 2α =
2 cos2 α− 1 = 1 − 2 sin2 α. It should be clear what’s going on.

[

5

4
− sin2 φ sin2 θ − 1

4
sin2 θ cos2 φ− cos θ

]

=
[

5

4
− 1

2
(1 − cos 2φ) sin2 θ − 1

8
sin2 θ(1 − cos 2φ) − cos θ

]

=
[

5

8
(1 + cos2 θ) − cos θ − 3

8
sin2 θ cos 2φ

]

=
[

5

4
− 1

2
(1 + cos 2φ) sin2 θ − 1

8
sin2 θ(1 − cos 2φ) − cos θ

]

=
[

5

4
− 5

8
sin2 θ − 3

8
sin2 θ cos 2φ− cos θ

]

=
[

5

4
− 5

8
(1 − cos2 θ) − 3

8
sin2 cos 2φ− cos θ

]

=
[

5

8
(1 + cos2 θ) − cos θ − 3

8
sin2 θ cos 2φ

]

Then, we have what Jackson wants.

(

dσ

dΩ

)

= k4a6
[

5

8
(1 + cos2 θ) − cos θ − 3

8
sin2 θ cos 2φ

]
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Problem 10.11
A perfectly conducting flat screen occupies half of the x-y plane
(i.e., x < 0 ). A plane wave of intensity I0 and wave number k is
incident along the z axis from the region z < 0. discuss the values of
the diffracted fields in the plane parallel to the x-y plane defined by
z = Z > 0. Let the coordinates of the observation point by (X,0,Z).

a. Show that, for the usual scalar Kirchoff approximation and in
the limit Z >> X and

√
kZ >> 1, the diffracted field is

Ψ =
√

I0

(

1 + i

2i

)

eikZ−iωt

√

2

π

∫ ∞

−Ξ
eiu2

du

where Ξ = X( k
2Z

)
1

2 .

Ψ(r0) =
k

2πi

√

I0

∫

Aperture

eikrp

rp

dA′

r0 is the observation point, and rp =
√

(x′ −X)2 + (y′ − Y )2 + (z′ − Z)2 is
the distance from the area point at the aperture to the observation point.
The small letters denote the aperture values while the large letters denote
values at the observation point. dA′ = dx′dy′ in this case because the screen
is in the xy plane.
I proceed first by evaluating the integral over the y coordinate.

I1 =
∫ ∞

∞

eikrp

rp
dy′
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I exploit the symmetry of the integral about y = 0, and replace ρ2 = (x′ −
X)2 + (z′ − Z)2.

I1 = 2
∫ ∞

0

eik
√

(y′−Y )2+ρ2

√

(y′ − Y )2 + ρ2
dy′

Substitute ν =
√

(y′ − Y )2 + ρ2.

I1 = 2
∫ ∞

ρ

eikν

√
ν2 − ρ2

dν

Remember from basic calculus,

∫ ∞

0

sin(Ax)√
x2 − 1

dx =
π

2
J0(A)

∫ ∞

0

cos(Ax)√
x2 − 1

dx = −π
2
N0(A)

J0 is a Bessel function and N0 is a Neumann function. I will use these to
reduce the integral to a more tractable form. By Euler’s handy formula,
eix = cosx+ i sin x. so we can write

I1 = 2
∫ ∞

ρ

eikν

√
ν2 − ρ2

dν = 2
∫ ∞

ρ

[cos(kν) + i sin(kν)]√
ν2 − ρ2

dν

Let ξ = ν/ρ and dξ = 1
ρ
dν.

I1 = 2
∫ ∞

1

[cos(kρξ) + i sin(kρξ)]√
ξ2 − 1

dξ = 2[−π
2
N0(kρ) + i

π

2
J0(kρ)]

And so the first part of the surface integral is done.
Now, I will attempt to integrate over dx′. Don’t forget ρ is a function of x′.

I2 =
∫ ∞

0
−πN0(kρ) + iπJ0(kρ)dx

′ = iπ
∫

J0(kρ) + iN0(kρ)dx
′

In the limit
√
kZ >> 1 → kZ >> 1 and ρk >> 1, the Bessel function and

its friend can be approximated by the following:

J0(A) ≃
√

2

πA
cos(A− π

4
)
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N0(A) ≃ −
√

2

πA
sin(A− π

4
)

And the integral reduces to

I2 =
∫ ∞

0
iπ

√

2

πkρ
[cos(kρ− π

4
) + i sin(kρ− π

4
)]dx′

Which easily reduces to

I2 =
∫ ∞

0
i

√

2π

kρ
ei(ρk−π

4
)dx′ = i

√
2π
∫ ∞

0
ei(ρk−π

4
)

√

1

kρ
dx′

Lest I loose track of all the coefficients, I’ll rewrite Ψ.

Ψ =
k

2πi

√

I0i
√

2π
∫ ∞

0

ei(ρk−π
4
)

√
ρk

dx′ = k

√

I0
2π
e−i π

4

∫ ∞

0

e[ik
√

(x′−X)2+(z′−Z)2]

√

k
√

(x′ −X)2 + (z′ − Z)2

dx′

I have written ρ in explicitly to remind us that ρ depends on x′. Now, I label
the integral as I3 and tackle this integration.

I3 =
∫ ∞

0

e[ik
√

(x′−X)2+(z′−Z)2]

√

k
√

(x′ −X)2 + (z′ − Z)2

dx′

So far, I haven’t make use of the fact that z′ = 0. I’ll do that now.

If (x′ −X) << Z, we can expand
√

(x′ −X)2 + Z2 ≃ Z + (x′−X)2

2Z
. So

I3 =
eikZ

√
kZ

∫ ∞

−Ξ

√

2Z

k
eiu2

du

where u =
√

k
2Z

(x′ − X), and the limits of integration have been changed

accordingly, Ξ = X
√

k/(2Z). This gives the result:

Ψ = k

√

I0
2π
e−i π

4

eikZ

√
kZ

√

2Z

k

∫ ∞

−Ξ
eiu2

du

A little work with an Argand diagram should convince you that

e−i π
4 =

1√
2
− i

1√
2

=
√

2
(

1 + i

2i

)
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and then, Ψ reduces to Jackson’s result.

Ψ =
√

I0

(

1 + i

2i

)

eikZ−iωt

√

2

π

∫ ∞

−Ξ
eiu2

du

where Ξ = X( k
2Z

)
1

2 . Note: I didn’t assume time dependence from the start,
but if I did the derivation would be the same. I would have simply factored
the e−iωt out from the start. So I just put it back here.
b. Find the intensity. Determine the asymptotic behavior of I for
ξ large and positive (illuminated region) and ξ large and negative
(shadow region). what is the value of I at X = 0? Make a sketch
of I as a function of X for fixed Z.
We need to rewrite I4 is a suggestive way.

I4 =
∫ ∞

−Ξ
eiu2

du

Everybody should know the friendly Fresnel Integrals:

C(λ) =
∫ λ

0
cos(

πx2

2
)dx

S(λ) =
∫ λ

0
sin(

πx2

2
)dx

And using Euler’s handy relationship,

∫ λ

0
eiπ x2

2 dx = C(λ) + iS(λ)

In our case.
∫ ∞

−Ξ
eiu2

du =

√

π

2
[C(∞) + iS(∞) − C(−Ξ) − iS(−Ξ)]

I will use the symmetry of C(x) and S(x), namely, C(x) = −C(−x) and
S(x) = −S(−x) to get rid of all the unwanted minus signs.

∫ ∞

−Ξ
eiu2

du =

√

π

2
[C(∞) + iS(∞) + C(Ξ) + iS(Ξ)]
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To find C(x) and S(x) at infinity, we need limt→±∞ C(t) = ±1
2

and limt→±∞ S(t) =
±1

2
. I4 is evidently representable by 1

2
(1 + i) + C(Ξ) + iS(Ξ). The intensity

is given by |Ψ|2 so

I = |
√

2

π

√

I0

(

1 + i

2i

)

eikZ−iωt|2
[

1 + i

2
+ C(Ξ) + iS(Ξ)

]2

=

(

2

π
I0

)

π

2

[

(

C(Ξ) +
1

2

)2

+
(

S(Ξ) +
1

2

)2
]

And finally, we have what Jackson wants.

I =
I0
2

[

(

C(Ξ) +
1

2

)2

+
(

S(Ξ) +
1

2

)2
]

As Ξ → ∞+, I → I0, and we have a bright spot. As Ξ → ∞−, I → 0, and
we have a shadow. At X = 0, Ξ = 0, and I = I0

4
.

The graph is coming soon!
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Bonus Section: A Review of Lorentz Invariant Quantities
Relativistic notation is a mess, and admittedly Jackson doesn’t do that
poorly trying to straighten things out. In order to keep track of the pesky
minus sign in the Minkowski metric, σ2 = t2 − x2 − y2 − z2, we define two
types of four tensor, covariant and contra-variant4. Contra-variant tensors
are much like a regular old Euclidean tensor. The entries all have positive
signs and transform as you’d expect (I’ll get to that later). I keep the name
and position of the indices straight by remembering how contradictory rela-
tivity first seemed, but since these vectors are easier to work with, I’ll give
them one thumb up and place their indices up. It’s no surprise that the
simpler named covariant vectors have tricky minus signs before the space co-
ordinates. I’ll put this covariant indices low because of this covert behavior.
O.K. Enough silly semantics.
My purpose here is to review a bit of notation and to stress the usefulness
of Lorentz invariants. First, accept ∂xα

∂xβ = δαβ. I think Goldstein discusses
this in his sections on field theory, so I won’t explain where this came from.
Clearly, this is reasonable. A derivative of a constant is zero, and a derivative
of a function by itself is one.
For a first rank tensor, the transformation rules are as follows: Covariant
first ranked tensor,

A′α =
∂x′α

∂xβ
Aβ

Contra-variant first ranked tensor,

B′
γ =

∂xǫ

∂x′γ
Bǫ

And the scalar product, B′
αA

α′,

B′
αA

′α =
∂xǫ

∂x′α
Bǫ
∂x′α

∂xβ
Aβ =

∂xǫ

∂xβ
BǫA

β = δǫβBǫA
β = BβA

β

is invariant under Lorentz transformations. For example, the mass of a par-
ticle is a Lorentz invariant. ℘′

µ℘
µ′ = ℘µ℘

µ = m2.
For second rank tensors, we can devise similar rules. First, for the completely
covariant object

C ′αβ =
∂x′α

∂xγ

∂x′β

∂xǫ
C ′γǫ

4For the more mathematically oriented, this should sound cacaphonous.
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And now for the completely contra-variant monster

D′
αβ =

∂xζ

∂x′α
∂xη

∂x′β
D′

ζη

And I suppose we could consider a mixed object, but I have grown tired of
writing all these indices. The scalar product of two second rank tensors is
invariant under Lorentz transformations:

D′
αβC

′αβ =
∂xζ

∂x′α
∂xη

∂x′β
D′

ζη

∂x′α

∂xγ

∂x′β

∂xǫ
C ′γǫ =

∂xζ

∂xγ

∂xη

∂xǫ
DζηC

γǫ = δζγδηǫDζηC
γǫ = DζηC

ζη

For example, magnetic and electric dipoles can be expressed by a tensors,
Mµν , and F αβ in the electro-magnetic field tensor. Uinteraction = 1

2
MµνF

µν =
1
2
M ′

µνF
′µν ; id est the interaction energy is invariant under Lorentz transfor-

mations.
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Problem 11.5
A coordinate system K ′ moves with a velocity ~v relative to another
system K. In K ′, a particle have velocity ~u′ and an acceleration ~a′.
Find the Lorentz transformation law for accelerations, and show
that in the system K the components of acceleration parallel and
perpendicular to ~v are as I will derive.
To make life easier on me, I’ll omit the vector symbols on the vectors in this
problem. They should be obvious anyway.
To solve this problem, I must use the relationship

dt′

dt
=

(

1 − v2

c2

) 1

2
(

1 +
v · u′
c2

)−1

So first, I’ll derive this. From Jackson page 531, we have u′ = cdx′

dt′
which can

be rearranged to give dx′ = u′

c
dt′. Dot multiply both sides of this equation

for dx′ by β = v
c
. Then, we have β · dx′ = β · u′

c
dt′ = v·u′

c2
dt′. According to

Jackson in section 11.4, we have the relationship dt = γ(dt′ + β · dx′). As

usual, γ =
(

1 − v2

c2

)− 1

2 . Plug the equation for β · dx′ into the equation for dt,
and then we get

dt = γ

(

1 +
v · u′
c2

)

dt′ → dt′

dt
=

(

1 − v2

c2

)
1

2
(

1 +
v · u′
c2

)−1

As I intended to prove.
From Jackson 11.31, we have the velocity addition equation for parallel com-
ponents of velocity

u‖ =
u′‖ + v

1 + v·u′

c2

Take the derivative with respect to dt.

a‖ =
du‖
dt

=
a′‖

1 + v·u′

c2

dt′

dt
−
(

u′‖ + v
)

(

1 +
v · u′‖
c2

)−2
(

v

c2

)

a′‖
dt′

dt

With some rearrangement,

a‖ =
du‖
dt

=

(

1 +
v · u′
c2

)(

1 +
v · u′
c2

)−2

a′‖
dt′

dt

−
(

u′ · v
c2

+
v2

c2

)(

1 +
v · u′‖
c2

)−2

a′‖
dt′

dt
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And the inclusion of dt′

dt
, we have

a‖ =
1 − v2

c2

(1 +
v·u′

‖

c2
)2
a′‖
dt′

dt
=

(

1 − v2

c2

)
1

2

(

1 + v·u′

c2

)3a
′
‖

In 11.31, Jackson also reported that for the perpendicular components of
velocity, the addition law is

u⊥ =
u′⊥

γ
(

1 + v·u′

c2

)

Once again, we take the derivative with respect to dt.

a⊥ =
du⊥
dt

=
a′⊥

γ
(

1 + v·u′

c2

)

dt′

dt
− u′⊥

γ
(

1 + v·u′

c2

)2

(

v · a′
c2

)

dt′

dt

After we plug in dt′

dt
explicitly,

a⊥ =
1 − v2

c2
(

1 + u·v′
c2

)3

[

a′⊥

(

1 +
v · u′
c2

)

− u′⊥
c2

(v · a′)
]

Using the vector identity, ~A× ( ~B × ~C) = (A ·C) ~B − (A ·B) ~C, we can write
v × (a′ × u′) = (v · u′)a′⊥ − (v · a′)u′⊥+ canceling a′‖ and u′‖ components.
Possibly, this might not be so obvious to you. Well, v cross anything must
be perpendicular to v. Therefore, the only vector components on the right
side of the triple product must be perpendicular to v or be pair ed in such a
way as to cancel. So finally, I can report.

a⊥ =
1 − v2

c2
(

1 + u·v′
c2

)3

[

a′⊥ +
1

c2
v × (a′ × u′)

]

And I have given Jackson what he wants.
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Problem 11.6
One set of twins is born in the year 2080. In the year 2100, NASA
decides to do an experiment. The government furtively seizes one
twin, throws him aboard a rocket bound for a distant star, and
sends the rocket into space. The rocket accelerates at the accel-
eration of gravity, g, in its own rest frame. Although the twin is
lonely, he won’t be too uncomfortable. The ship accelerates in a
straight-line path for 5 years (by its own clocks), decelerates at
the same rate for five years, turns around, accelerates for 5 years,
decelerates for 5 years, and lands on earth. The twin in the rocket
is then 40 years old.
According to the twin on the rocket, the trip to the distant star and back
lasts 20 years.

a(t′) =











g, t′ < 5
−g, 5 < t′ < 15
g, 15 < t′ < 20

a. What year is it on earth?
How much time will pass on the earth during this trip? Will the space bound
twin ever see his brother again?
Consider the first leg. a = g while t′ = 0 to 5. Let t′ denote the time on
the rocket and t denote the time on the earth. There is a simple relationship
from the Lorentz transformation equations between these times t′ = t

γ(t′)
.

For infinitesimal intervals, we have dt′ = dt
γ(t′)

. The total time elapsed on the
rocket is:

Trocket =
∫ 5

0
dt′ = 5

Tearth =
∫ ?

0
dt =

∫ 5

0
γ(t′)dt′

To get γ(t′), we need to sum over possible velocities so I’ll use rapidity5 which
is easier to work with.
First, we need dt′ in terms of rapidity. β = v

c
→ dβ = dv′

dt′
dt′

c
= g

c
dt′. This

gives us dt′ = c
g
dβ. Now, I need to figure out what γ(θ) is. Jackson, in one

of his rare instructive moments, taught us that β = tanh(θ). I can exploit

5The use of rapidity is not my own clever innovation. My prof. suggested this.

85



the additive properties of rapidity, θ, to write

β = tanh(
∑

θ) → ∆β = tanh(∆θ)

And so in the infinitesimal limit, I have dβ = tanh(dθ). I can compare this
to the first equation for dβ = g

c
dt′ to get an expression for dt′.

dt′ =
c

g
tanh(dθ)

Now, I expand tanh(dθ) = dθ − dθ3

3
and keep only the first term.

dt′ =
c

g
dθ

Finally,

β(t′) = tanh(
∫

dθ) = tanh(
∫ t′

0

g

c
dt′′) = tanh(

g

c
t′)

By the relationships given on Jackson 11.20, γ(t′) = cosh(g
c
t′) and that

β(t′)γ(t′) = sinh(g
c
t′). Putting all this together,

Tearth =
∫

γ(t′)dt′ =
∫ 5

0
cosh

(

g

c
t′
)

dt′

=
c

g
sinh

(

g

c
t′
)

|50=
c

g
sinh

(

5g

c

)

Take g = 10 m/sec2 and c = 3 × 108 m/sec. Don’t forget that 5 is in years,
and the equation is wrong unless I covert 1 year = 1.5768 × 108 seconds.
Then, Tearth = 91 years. By symmetry, the next three legs must each take
just as long. So the total time elapsed on the earth while the rocket twin
makes a round trip is 4 × 91 = 364 years. The twin will come back home in
the year 2100 + 365 = 2464, and his brother will be dead.
b. How far away from the earth did the ship travel?
I will use a similar technique.

xearth =
∫

cβ(t′)dt =
∫ 10

0
cβ(t′)γ(′t)dt′

xearth =
∫ 5

0
c sinh

(

g

c
t′
)

dt′ −
∫ 5

0
c sinh

(−g
c
t′
)

dt′

=
2c2

g
cosh

(

g

c
t
)

|50≈ 168
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So the distance to the turning point is about 168 light years. This makes
sense because if we assume that the ship was traveling at pretty much the
speed of light for 2×91 years, the ship would have gone 182 light years. But
obviously, the ship was going a little bit slower.
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Problem 11.7
In the reference frame K two evenly matched sprinters are lined
up a distance d apart on the y axis for a race parallel to the x
axis. Two starters, one beside each man (or woman), will fire their
starting pistols at slightly different times, giving a handicap to the
better of the two runners. The time difference in K is T .
a. For what range of time differences will there be a reference
frame K ′ in which there is no handicap, and for what range of
time differences in there a frame K ′ in which there is a true (not
apparent) handicap?
The question is about the non-synchronicity of events as witnessed in different
Lorentz frame.
For simplicity and for symmetry reasons, we’ll consider a Lorentz frame mov-
ing along the y-axis parallel to the starting line or perpendicular to the race
path, x-axis.
In S, the race frame: yA = 1

2
d and yB = −1

2
d. The starting time for the first

runner is tB = 0, and for the second runner is tA = T .
In S ′, the arbitrary Lorentz frame moving with velocity u along the y-axis
relative to the race frame:

T ′ =
Tc2 − ud

c2
√

1 − u2

c2

If the handicap is not real, we can find a frame in which T ′ = 0. This will
be the case when ∆t = ud

c2
. Since we have a range of possible frame speeds

from 0 to c, we can find a corresponding range of possible delays, T = 0 to
d
c
. For larger time delays, the runner is given a true handicap.

b. Determine explicitly the Lorentz transformation to the frame
K ′ appropriate for each of the two possibilities in part a, finding
the velocity of K ′ relative to K and the space-time positions of each
sprinter in K ′.
To find the Lorentz frame in which the time delay vanishes, we use the
condition on T and solve for u.

u =
c2T

d

Obtaining the Lorentz transformations is straightforward. We can write these
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as matrices.
(

t′A
y′A

)

=

(

γ −γβ
−γβ γ

)(

tA
yA

)

=

(

γ −γ cT
d

−γ cT
d

γ

)(

T
1
2
d

)

And
(

t′B
y′B

)

=

(

γ −γβ
−γβ γ

)(

tB
yB

)

=

(

γ −γ cT
d

−γ cT
d

γ

)(

0
−1

2
d

)

With γ = 1
√

1− c2T2

d2

.

y′A =
1
2
d− c2T 2

d
√

1 − c2T 2

d2

t′A =
1
2
T

√

1 − c2T 2

d2

y′B =
−1

2
d

√

1 − c2T 2

d2

t′B =
1
2
T

√

1 − c2T 2

d2

To find the transformations in the true handicap case is also straightforward.
I define T = d

c
+ ǫ, where ǫ is the part of the handicap that will never be

transformed entirely away.

t′A =
d
c

+ ǫ− 1
2

ud
c2

√

1 − u2

c2

y′A =

1
2
d− u

(

d
c

+ ǫ
)

√

1 − u2

c2

t′B =
1
2

ud
c2

√

1 − u2

c2

y′B =
−1

2
d

√

1 − u2

c2
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Problem 11.13
An infinitely long straight wire of negligible cross-sectional area is
at rest and has a uniform linear charge density q0 in the inertial
frame K ′. The frame K ′ (and the wire) move with velocity ~v parallel
to the direction of the wire with respect to the laboratory frame
K.
In K, we have a wire with charge density, λ, but no current density. Because
of the obvious cylindrical symmetry, we’ll use cylindrical coordinates. In K ′,
we have a nonzero current density, ~J ′ 6= 0, and a charge density, λ′. The
velocity of frame K ′ with respect to K is ~v = vẑ. Watch out because in this
problem I start off using Jackson units, but then switch rather abruptly to
S.I. units.
a. Write down the electric and magnetic fields in cylindrical coor-
dinates in the rest frame of the wire. Using the Lorentz transfor-
mation properties of the fields, find the components of the electric
and magnetic fields in the laboratory.
In K,

Er =
q0

2πǫ0r

Eθ = 0 and Ez = 0 by Gauss’s law, and ~B = 0 from the fact that there
is no current (real or displacement) in this frame. We can use the Lorentz
transformations for the fields to get from one frame to another. They are:

E ′ = γ(E + β × B) − γ2

γ + 1
β(β · E)

B′ = γ(B − β × E) − γ2

γ + 1
β(β · B)

After applying these transformations, we find

E ′
r =

γq0
2πǫ0r

And
B′

θ = γ(−βEr) = −βγ q0
2πǫ0r

The other components vanish by symmetry or explicit calculations whichever
you prefer. E ′

θ = 0,E ′
z = 0, B′

r = 0, and B′
z = 0.
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Now, I switch rather abruptly to S.I. so that I can compare my results to
Griffiths. We have

E ′
r =

γq0
2πǫ0r

And

B′
θ = −1

c
βγ

q0
2πǫ0r

Fortunately, these compare well to Griffiths’ results. It makes sense that β
is negative if you look at the diagrams which I should scan someday.
b. What are the charge and current densities associated with the
wire in its rest frame? In the laboratory?
In K, we have

J4 =











cρ
Jz

Jr

Jθ











=











c
2π

q0

r
δ(r)
0
0
0











And the appropriate Lorentz transformation also can be written in matrix
form.

L =











γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1











To transform into the K ′ frame is easy: J4′ = LJ4. Doing the matrix math
gives

~J4′ = J4′ =











cρ′

J ′
z

J ′
r

J ′
θ











=











cγ
2π

q0

r
δ(r)

− cβγ
2π

q0

r
δ(r)

0
0











c. From the laboratory charge and current densities, calculate
directly the electric and magnetic fields in the laboratory. Compare
with the results of part a.
For K ′, we have found ~J4′. From the results in part b, we deduce λ′ = γλ
and ~J ′ = −βγcq0δ(r)ẑ = − βγq0

cµ0ǫ0
δ(r)ẑ. For E,

E ′
r =

λ′

2πǫ0r
=

γq0
2πǫ0r
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For B,

B′
θ =

µ0J
′
z

2πr
=

µ0

2πr

(

−βγq0
cµ0ǫ0

)

= −1

c
βγ

q0
2πǫ0r

Where I have used the relation, c = 1
cµ0ǫ0

. Once again by symmetry, Eθ =
0,Ez = 0, Br = 0, and Bz = 0.
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Problem 11.15
In a certain reference frame a static, uniform, electric field E0 is
parallel to the x axis, and a static, uniform, magnetic induction
B0 = 2E0 lies in the x − y plane, making an angle θ with the axis.
Determine the relative velocity of a reference frame in which the
electric and magnetic fields are parallel. What are the fields in that
frame for θ << 1 and θ → π

2
?

In S: Given: ~E = E0x̂, |B| = 2E0, ~B lies in the x− y plane.

Find an S ′ frame where E and B are parallel. That is a frame where ~E ′× ~B′ =
0. From Jackson, we have the field transformation.

~E ′ = γ
(

~E + β × ~B
)

− γ2

γ + 1
β
(

β · ~E
)

~B′ = γ
(

~B − β × ~E
)

− γ2

γ + 1
β
(

β · ~B
)

I want a frame where ~E ′ × B′ = 0; in all its glory, this can be written

1

γ2
~E ′ ×B′ =

~E × ~B − ~E × (β × ~E) + (β × ~B) × ~B + (β × ~B) × (β × ~E)

+
γ2

γ + 1
(β × β)(β · ~E)(β · ~B)

− γ

γ + 1

[

( ~E × β)(β · ~B) + (β × ~B) × β(β · ~B)(β × ~B)(β · ~E) − β × (β × ~E)(β · ~E)
]

= 0

To simplify I must use the following identities:

1.

β × β = 0

2.

~E × (β × ~E) = β( ~E2) − ~E(β · ~E)

3.

(β × ~B) × ~B = − ~B × (β × ~B) = −β( ~B2) + ~B(β · ~B)
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4.

(β × ~B) × β = −β × (β × ~B) = −β( ~B · β) − ~B(β2)

5.

β × (β × ~E) = β(β · ~E) − ~E(β2)

6.

(β × ~B) × (β × ~E) = β · ( ~B × ~E)β − [β · (β × ~B)] ~E = [β · ( ~B × ~E)]β

Using these relationships, I have

~E × ~B + [β · ( ~B × ~E)]β − ( ~E2 + ~B2)β + (β · ~E) ~E + (β · ~B) ~B

− γ

γ + 1

[

−(β × ~E)(β · ~B) + (β × ~B)(β · ~E)
]

+
γ

γ + 1

[

(β · ~B)[−β(β · ~B) + ~Bβ2] + (β · ~E)[β(β · ~E) − ~Eβ2]
]

= 0

This is still exceptionally complicated.
There is a whole plane of possible Lorentz transformations which bring us
to a frame where E and B are perpendicular. I won’t bother to show this
general relationship because Jackson only asks for a frame. That means one!
I’ll choose the particularly simple case where β is along the z axis. In this
case β · ~E = 0 and β · ~B = 0. The equation reduces to

( ~E × ~B)ẑ + β2( ~E × ~B)ẑ − β( ~E2 + ~B2)ẑ = 0

Upon rearrangement,
~β

1 + β2
=

| ~E × ~B|
~E2 + ~B2

ẑ

Since | ~E × ~B| = 2E2
0 sin θ and ~E2 + ~B2 = 5 ~E2,

β

1 + β2
=

2

5
sin θ
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For θ << 1, sin θ ≈ θ. We can’t choose β > 1; it follows that β ≈ 2
5
θ and

γ =
√

1 − 4
25
θ2.

E ′ = γ(E + β ×B) + 0 = (1 − 4

5
θ2)−

1

2 [E0 +
4

5
E0θ]

Take advantage of the invariant quantity ~E · ~B = ~E ′ · ~B′.

~E · ~B ≈ 2E2
0 = E0(1 − 4

25
θ2)−

1

2 (1 +
4

5
θ)B′ sin

π

2

So

B′ = 2

√

1 − 4
25
θ2

1 − 4
5
θ

E0

As θ → 0, we get |E| = E0 and |B| = 2E0 as expected.
For θ → π

2
, we the sin term goes to 1 and we get a quadratic equation.

β2

1 + β2
=

2

5
sin

π

2
=

2

5
→ β2 − 5

2
β + 1 = 0

which has two roots, 2 and 1
2
. The first is clearly unreasonable because β > 1

means that the frame velocity exceeds the speed of light. Good luck getting
into that reference frame.
Therefore, |β| = 1

2
. In this case, ~E ′ → 0 and ~B′ →

√
3E0.
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Problem 11.22
The presence in the universe of an apparently uniform sea of black-
body radiation at a temperature of roughly 3K gives one mecha-
nism for an upper limit on the energies of photons that have trav-
eled an appreciable distance since their creation. Photon-photon
collisions can result in the creation of charges particle and its anti-
particle (pair creation) if there is sufficient energy in the center of
mass of the two photons. The lowest threshold and the largest cross
section occurs for an electron-positron pair.
Take c = 1. At 3 K, the typical energy E1 for a background photon is
2.5 × 10−4 eV. Assume the momentum for the background photon and the
incident photon are anti-parallel. Exploit conservation of energy and the
Lorentz invariant properties of four vectors squared.

(

2me

0

)2

=

(

E2 + E1

p2 + p1

)2

So
4m2

e = E2
1 + E2

2 + 2E1E2 − (p2
1 + p2

2 + 2p1 · p2)

But |pi| = Ei for photons because they have no mass. Since p1 and p2 are
anti-parallel p1 · p2 = −|p1||p2| . So

4m2
e = E2

1 + E2
2 + 2E1E2 − (E2

1 + E2
2 − 2E1E2)

Which can easily be rearranged to give

E2 =
m2

e

E1

a. Taking the energy of a typical 3K photon to be E = 2.5 × 10−4

eV, calculate the energy for an incident photon such that their en-
ergy just sufficient to make an electron-positron pair. For photons
with energies larger than this threshold value, the cross section
increases to a maximum of the order of ( e2

mc2
)2 and then decreases

slowly at higher energies. This interaction is one mechanism for the
disappearance of such photons as they travel cosmological distance.
E2 = 1.044 × 1015 eV or 1.67 × 10−4 joules.
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b. There is some evidence for a diffuse x-ray background with
photons having energies of several hundred volts or more. Beyond
1 keV the spectrum falls as E−n with n ≃ 1.5. Repeat the calculation
of the threshold incident energy, assuming that the energy of the
photon in the sea is 500 eV.
Assume E1 = 500 eV or 0.5 KeV. E2 = 5.22 × 108 eV.
An aside: From thermodynamics, we expect pair production effect to become
significant when kbT ∼ mec

2. This corresponds to a temperature of about
109 K. So we should expect that E2 must be very high if E1 is very low, on
the order of a few or even a few hundred thousand Kelvin, as it is in part a
and then b.

97



Problem 11.23
In a collision process a particle of mass m2, at rest in the laboratory,
is struck by a particle of mass m1, momentum ~pLAB and total energy
ELAB. In the collision the two initial particles are transformed into
two others m3 and m4. The configurations of the momentum vectors
in the center of momentum (cm) frame and the laboratory frame
are shown in the figure.

℘1 + ℘2 → ℘3 + ℘4

a. Use invariant scalar products to find the square of the total
energy W in the cm frame and to find the cm 3-momentum.
I am going to take advantage of the fact that the product of two Lorentz
four vectors is invariant or the same in all Lorentz frames. A prime denotes
that a quantity is measured in the center of momentum frame. no prime
means that the quantity is measured in the lab frame. Sometimes, I get a
bit carried away and use both subscripts and prime

W 2 =

(

E1 +m2

~p1

)2

lab

= E2
1 +m2

2 + 2E1m2 − |~p1|2

but E2
i − p2

i = m2
i consequently

W 2 = m2
1 +m2

2 + 2E1m2

And in the center of momentum frame,

W ′2 =

(

E ′
1 + E ′

2

0

)2

CM

→W ′ = E ′
1 + E ′

2

So W ′ is the total energy in the center of mass frame. W 2 is an invariant
scalar so W ′2 = W 2.
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p′ = β ′
2γ

′
2m2, but |~p2| = 0 because this particle is at rest. Therefore, in

the center of momentum frame, particle two’s velocity will be −βCM and
γ = γCM . From part b of this problem or through gruesome algebra, we have
results for βCM and γCM . Thus,

p′CM = −β ′
CMγ

′
CMm2 =

plab

m2 + Elab

m2 + Elab

W
m2 =

m2plab

W

Or if you the gratuitous details of the algebraic approach in lingua latina:
Ex principis invarianta quanta habemus

℘2
lab = ℘2

CM → (Elab +m2)
2 − p2

lab = (E ′
1 + E ′

2)
2 = E ′2

1 + E ′2
2 + 2E ′

1E
′
2

Eo quod E ′
i =

√

m2
1 + p′2i , sequitur

(Elab +m2)
2 − p2

lab = m2
1 +m2

2 + 2p′2 + 2E ′
1E

′
2

Torqutum

2m2Elab = 2p′2 + 2E ′
1E

′
2 → 2m2Elab − 2p′2 = 2E ′

1E
′
2

Atque
4m2

2E
2
lab − 8p′2m2Elab + 4p′2 = 4E2

1E
2
2

Quoniam E ′
i =

√

m2
1 + p′2i ;

4m2
2(m

2
1 + p2

lab) − 8p′2m2Elab + 4p′4 = 4(m2
1 + p′21 )(m2

2 + p′22 )

Et
m2

2p
′2 − 2m2p

′2Elab = m2
1p

′2 +m2
2p

′2

Mota posita litterarum

m1p
′2 +m2p

′2 + 2m2Elabp
′2 = m2

2p
′2

igitur
W 2p′2 = m2

2p
2
lab

tandem

p′2 =
m2

2p
2
lab

W 2
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atque

p′ =
m2plab

W
b. Find the Lorentz transformation parameters βCM and γCM de-
scribing the velocity of the cm frame.
The definition of βCM :

βCM =

∑

plab
∑

Elab
=

p1

E1 +m2

Notice that in the center of momentum frame βCM = 0 as expected since
βCM describes the velocity of the center of momentum frame relative to the
frame in which the momentum and energies are measured.

γCM =
1√

1 − β2
=

[

1 −
(

p1

E1 +m2

)2
]− 1

2

=
E1 +m2

√

(E1 +m2)2 − p2
1

but (E1 +m2)
2 − p2

1 = E2
1 +m2

2 +2E1m2 − p2
1 and E2

1 − p2
1 = m2

1 so the terms
in the square root are just m2

1 +m2
2 + 2E1m2 = W 2 and

γCM =
E1 +m2

W

c. Take the non-relativistic limit of the results in part a and b.
Start with W 2 = m2

1 +m2
2 +2E1m2 = (m1 +m2)

2 − 2m1m2 +2E1m2. Define
T = E1 −m1.

W 2 = (m1 +m2)
2 + 2m2T

Write this in a suggestive form.

W = (m1 +m2)

√

1 +
2m2T

(m1 +m2)2

Since 2m2T << m1 +m2, we can use
√

1 + x ≃ 1 + 1
2
x.

W ≃ (m1 +m2)

(

1 +
m2T

(m1 +m2)2

)

= m1 +m2 +
m2

m1 +m2
T

where T = E1 − m1. For v << c the usual expansion applies E1 = m1 +
p2

2m1
+O(p4). So T = m1 +

p2
1

2m1
+ ...−m1.

W ≃ m1 +m2 +
(

m2

m1 +m2

)

p2
1

2m1
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And W−1 ≃ (m1 +m2)
−1 because the final term in W is so small. Using this

we have

p′ =
m2p1

W
=
(

m2

m1 +m2

)

p1

And
βCM =

p1

m2 + E1

=
p1

m1 +m2

Where I have ignored first order and higher corrections to E1, i.e. E1 ≃ m1.
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Problem 11.26
a. In an elastic scattering process the incident particle imparts
energy to the stationary target. The energy ∆E lost by the inci-
dent particle appears as recoil kinetic energy of the target. In the
notation of Problem 11.23, m3 = m2 and m4 = m2, while ∆E = t4 =
E4 −m4.
a. Show that ∆E can be expressed in three different ways. Q2 =
−(℘1−℘3)

2 is the Lorentz invariant momentum transfer (squared).
The diagrams appropriate to this problem are shown for Jackson problem
11.23 m1 is the incident particle’s mass before the collision, and m2 is the
struck particle’s mass before the collision. m3 andm4 designate the respective
particle masses after the collision. For an elastic collision, m3 = m1 and
m4 = m2. The unprimed quantities are in the lab frame while the primed
quantities are in the center of momentum frame. Note also that plab = p1

because p2 = 0, the other particle is at rest initially in the lab.
For the first part of this problem, I wanted to do things the brute force way
to give you some idea of the kind of awkward algebra involved. But as is
typically the case, the algebra6 “compelled” me not to take this route.
For the first relationship, I’ll use an elegant approach which takes advantage
of the invariant properties of four-vectors squared. First of all, consider the
scalar product in the center of momentum frame. Note E ′

2 = E ′
4 because of

conservation of momentum.

℘′
2℘

′
4 = E ′

2E
′
4 − pq cos θ′ = m2

2 + p′22 − p′22 cos θ′ = m2
2 + p2

2(1 − cos θ′)

In the lab,
℘2℘4 = m2E4 − 0 = m2

2 +m2∆E

Using E4 = ∆E +m2. Because of Lorentz invariance, ℘′
2℘

′
4 = ℘2℘4, we get

∆E =
p2

2

m2
(1 − cos θ′)

For the second relationship,

℘1 + ℘2 = ℘3 + ℘4 → ℘1 − ℘4 = ℘3 − ℘2

6In Arabic, al-jabra means roughly to compel, so this is really just a terrible pun
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Square it.

(℘1 − ℘4)
2 = (℘3 − ℘2)

2

Multiply out the squares. Don’t forget ℘2 = m2.

m2
1 +m2

4 − 2(E1E4 − p1p4 cos Θ′) = m2
3 +m2

2 − 2(E2E3 − p2p3)

But m2 is at rest before the collision so p2 = 0 and E2 = m2. The collision
is elastic, that is m1 = m3 and m2 = m4, so we get

E1E4 − p1p4 cos Θ′ = m2E3 → p1p4 cos Θ′ = E1E4 −m2E3

As before E4 = ∆E +m2 so E3 = E1 − ∆E.

p1p4 cos Θ′ = E1(∆E +m2) −m2(E1 − ∆E) = ∆E(E1 +m2)

Square this, and substitute the total center of momentum energy, W 2 =
(E1 +m2)

2 − p2
1.

p2
1p

2
4 cos2 Θ′ = ∆E2(W 2 + p2

1)

Play around with some algebra.

p2
1(E

2
4 −m2

4) cos2 Θ′ = p2
1(∆E

2 + 2m2∆E) cos2 Θ′ = ∆E2(W 2 + p2
1)

Divide by ∆E.

2m2p
2
1 cos2 Θ′ = ∆E(W 2 + p2

1 − p2
1 cos2 Θ′) = ∆E(W 2 + p2

1 sin2 Θ′)

Solve for ∆E.

∆E =
2m2p

2
1 cos2 Θ′

W 2 + p2
1 sin2 Θ′

For the third relation, we need Q2. Q2 is defined as follows

Q2 = −(℘1 − ℘3)
2 = (p1 − p3)

2 − (E1 −E2)
2

In the center of momentum frame, |p′1| = |p′3| = p′ so

E ′
1 − E ′

3 =
√

m2 + p′21 −
√

m2 + p′23 = 0
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And

(p′1 − p′3)
2 = p′21 + p′23 − 2p′1p

′
3 cos θ′ → (7)

(p′1 − p′3)
2 = 2p′2(1 − cos θ′) (8)

Thus,
Q2 = 2p′2(1 − cos θ′)

Use the first relation, ∆E = p′2

m2
(1 − cos θ′), from problem 11.23. Substitute

Q2 and get

∆E =
Q2

2m2

b. Show that for charged particles other than electrons incident
on stationary electrons (m1 >> m2) the maximum energy loss is
approximately

∆EMax ≃ 2meγ
2β2

where γ and β are characteristic of the incident particle and γ <<
m1

me
. Give this result a simple interpretation by considering the

relevant collision in the rest frame of the incident particle and
then transforming back to the laboratory.
For m1 >> m2, we start with the first expression for the energy change.

∆E =
m2p

2
1

W 2
(1 − cos θ′)

This attains its greatest value when θ′ = π and 1 − cos θ′ = 2, then

∆EMax =
2m2p

2
1

W 2
=

2meγ
2β2m2

1

W 2

W 2 = m2
1 +m2

e + 2meE1 can be written in a suggestive manner.

W 2 = m2
1

(

1 +
m2

e

m2
1

+ 2
me

m1

γ
m1

me

)

Because m1 >> me, the second term in the brackets is small and can be
ignored to first order. Because γ << m1

me
, the third term is similarly small

and can be ignored. So we have W 2 ≃ m2
1. We conclude

∆EMax ≃ 2meγ
2β2
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When Jackson asks for a simple interpretation, I’m not sure what the Hell he
wants. His question is vague. Maybe, he wants us to make some statement
about m1 being almost stationary. You’ll have to bullshit your way through
this.
c. For electron-electron collisions, find the maximum energy trans-
fer.
For electron collisions, m1 = m2 = me. Use the formula for ∆E from the
beginning of part b, but substitute in W explicitly.

∆EMax =
2m2p

2
1

2m2E1 +m2
1 +m2

2

=
mep

2
1

meE1 +m2
e

=
p2

E +m
=

γ2β2m2

γm+m
=

(

γ2β2

γ + 1

)

me

With a little trivial algebra, we find β2 = γ2−1
γ2 . Substitute in for β and get

the desired result.

∆EMax = (γ − 1)me
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Problem 12.3
A particle with mass m and charge e moves in a uniform, static,
electric field field ~E0.
a. Solve for the velocity and position of the particle as explicit
functions of time, assuming that the initial velocity ~v0 was perpen-
dicular to the electric field.
Take ~F = e ~E0x̂. Since the initial velocity is non-vanishing but perpendicular
to the field, we have ~v0 = v0ŷ. The relativistic force law is d℘i

dt
= Fi, so we

have two equations which must be satisfied.

d

dt





mvx̂
√

1 − v2

c2



 = eE0x̂

And
d

dt





mvŷ
√

1 − v2

c2



 = 0

Integrate these.
mvx

√

1 − v2

c2

= eE0t+ C1

C1 = 0 because the initial x velocity is zero.

mvy
√

1 − v2

c2

= C2

To find C2, we must invoke initial conditions. At time initial, vy = v0 and
v2 = v2

0. Then,
mv0

√

1 − v2
0

c2

= C2 → C2 =
mv0c

√

c2 − v2
0

We can get vx and vy as functions of time.

v2
x =

e2E2
0t

2

m2
(1 − v2

x − v2
y)

v2
y =

C2
2

m2
(1 − v2

x − v2
y)
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Dividing these two, we get a relationship between vx and vy.

v2
x

v2
y

=
e2E2

0 t
2

A2

Now, solve for vx and vy.

v2
x =

c2e2E2
0t

2

c2m2 + e2E2
0 t

2 + C2
2

v2
y =

C2
2

c2m2 + e2E2
0t

2 + C2
2

Define γ0 = (1 − v2
0

c2
)−

1

2 and a = qE
mc

. We now have separate equations for vx

and vy.

vx =
cat

√

a2t2 + γ2
0

And
vy =

γ0v0
√

a2t2 + γ2
0

These two can be integrated over time to get the expressions for x(t) and
y(t).

x(t) = c
∫ t

0

at′
√

a2t′2 + γ2
0

dt′ =
c

a

[

√

a2t2 + γ2
0 − γ0

]

And

y(t) = γ0v0

∫ t

0

1
√

a2t′2 + γ2
0

dt′ =
γ0v0

a
ln





√

a2t2 + γ2
0 + at

γ0
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Problem 12.4
It is desired to make an E×B velocity selector with uniform, static,
crossed, electric and magnetic fields over a length L. If the entrance
and exit slit widths are ∆x, discuss the interval ∆u of velocities,
around the mean value u = cE

B
, that is transmitted by the device as

a function of the mass, the momentum or energy of the incident
particles, the field strengths, the length of the selector, and any
other relevant variables. Neglect fringing effects at the ends. Base
your discussion on the practical facts that L ≈ a few meters, EMax ≈
3 × 106 V/m, ∆x ≈ 10−3 − 10−4 m, and u ≈ 0.5 − 0.995c.

Consider the design of an ~E × ~B velocity selector. Take c = 1 as usual.
In S, ~E = Eŷ, ~B = Bẑ, ~u0 = u0x̂, and u0 = E

B
where u0 is the average

selected velocity. The aperture admittance is ∆x, and the length of the
selector is L. Let L = u0t̄→ t̄ = L

u0
. t̄ is the average time per particle in the

selector.
Go to S ′, a frame moving ~u = E

B
x̂. We are moving along with the particles

as they pass through the selector. Note that in this frame, the following
transformations hold:

E ′ = γ(E − uB) = γ(E − E) = 0

And

B′ = γ(B − uE)ẑ = γ(B − E2

B
)ẑ =

γ

B
(B2 − E2)ẑ

Which can be further simplified because γ = (1 − u2)−
1

2 = (1 − E2

B2 )
− 1

2 =
B√

B2−E2
, so

B′ =
√
B2 − E2ẑ =

B

γ
ẑ

Particles which have ~β = u0x̂ in the lab will be at rest in S ′ and so will be
unaffected by the field. Also in S ′, the time it takes for a particle to travel
from one aperture to the other is given by t′ = L

γu
. (More appropriately, this

is the time it takes one aperture to move away and the other one to arrive!)
The γ comes in because in this frame the selector is moving so the distance
is contracted. A particle with non-zero velocity in S ′ will be deflected in an
arc. I’ll draw this for clarity someday.

∆x′ = r′0(1 − cosω′
Bt

′)
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Since ∆x′ is perpendicular to u, ∆x′ = ∆x. Jackson told us ω′
B ≃ qB′

m
= qB

γm

and r′0 =
p′⊥
qB′ = mv′

qB′ = m
qB′ v

′ = v′

ω′
B

.

We expect the deflection to be small because the aperture we are considering

is small. Thus, we approximate cosω′
Bt

′ ≃ 1 − (ω′
B

t′)2

2
. So

∆x′ =
ω2

Bt
′2

2
r′0

Get v′ in terms of the variables we know, namely ∆u and u0. Assuming that
v is small compared to u, we can use the approximation that uv ≃ u2 so that
1 − uv ≃ γ2.

v′ =
v − u

1 − uv
= γ2∆u

Now, plug in v′ to the expression for ∆x.

∆x =
q2B2

2γ2m2

L2

γ2u2

γm

qB
γ2∆u

Simplify and substitute B = E
u
. We have the following expression for the

deflection:

∆x =
qEL2

2γmu3
∆u

With γum = p and some rearrangement, you should get

∆u =
2p

qL2E
u2∆x

Depending on how you define ∆u there may be a factor of two missing.
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Problem 12.5
A particle of mass m and charge e moves in the laboratory in
crossed, static, uniform, electric and magnetic fields. ~E is parallel
to the x axis; ~B is parallel to the y axis.
a. For |E| < |B| make the necessary Lorentz transformation de-
scribed in Section 12.3 to obtain explicitly parametric equations
for the particles trajectory.
c = 1, ~E = Ex̂, ~B = Bŷ. Since |E| < |B|, we can transform the E field

away by choosing a suitable Lorentz frame. Try ~u =
~E× ~B
B2 → ~u = E

B
ẑ. The

appropriate Lorentz transformations are:

E ′ = γ(E + β × B) − γ2

γ + 1
β(β · E)

B′ = γ(B − β × E) − γ2

γ + 1
β(β · B)

Note β · E = 0 and β · B = 0. With these, the fields transform as such.

E ′ = γ(E + β × B) = γ(E − uB)ŷ = γ(E − E

B
B) = 0

B′ = γ(B − β ×E) = γ(B − uE)ŷ =
γ

B
(B2 − E2)ŷ

But γ = (1 − E2

B2 )
− 1

2 = B√
B2−E2

so

B′ =
√
B2 − E2ŷ

Which can be expressed as in Jackson

B′
perp =

√

B2 − E2

B2
~B

In this frame, we have a particle moving in a uniform static B field. Jackson
solved this for us.

~x(t) = ~x0 + v‖t~ǫ3 + ia(~ǫ1 − i~ǫ2)e
−iωBt

Matching initial conditions requires

~x(t) = vytŷ + a cosωBtx̂+ a sinωBtẑ
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where ωB = eB′

γm
and a = p2

x+p2
z

eB
.

Now, I simply transform back to the lab to get what Jackson wants.

u = −E
B
ẑ

γ =
B√

B2 −E2

Jackson only wants parametric equation so I won’t bother with the compli-
cation that t = f(t′). The equation of motion along the ŷ direction is easy
because the fields do not accelerate the particle along this direction. The x̂
part is unaffected by the Lorentz transformation. The ẑ component is not
much more difficult. Just multiply by appropriate length contraction γ on
the z position in S ′ and add an additional term to account for the motion of
the frame. The γ factor on the latter term is necessary because the time is
given in the other frame. The final result is

~xlab(t) = a cos(ωBt)x̂+ vy,t=0tŷ + (γa sin(ωBt) + γut)ẑ

b. Repeat the calculation for |E| > |B|.
I didn’t do.
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Problem 12.14
An alternative Lagrangian density for the electro-magnetic field is

L = − 1

8π
∂αAβ∂

αAβ − 1

c
JαA

α

a. Derive the Euler-Lagrange equations of motion? Under what
assumption? (Where’s the verb in the last sentence?)
The Euler-Lagrange theorem says

∂L
∂φα

= ∂β ∂L
∂(∂βφα)

So we have ∂L
∂Aα = −1

c
Jα and

∂L
∂(∂βAα)

= − 1

8π

∂

∂(∂βAα)
(gσµgτν∂

µAν∂σAτ )

Recall that the rule for differentiation is ∂
∂(∂κAλ)

(∂ηAγ) = δκηδλγ .

∂L
∂(∂βAα)

= − 1

8π
gσµgτν[δβµδαν∂

µAν + δβσδατ∂
σAτ ]

Using the Dirac deltas, we get

∂L
∂(∂βAα)

= − 1

8π
[gσβgτα∂

βAα + gβµgαν∂
βAα] = − 1

8π
[2∂βAα]

The Euler-Lagrange equation of motion is, in our case,

∂β∂βAα =
4π

c
Jα (9)

If we are in the Lorentz gauge, ∂µA
µ = 0, and we can write equation 9

as ∂βFβα = 4π
c
Jα because Fβα = ∂βAα − ∂αAβ = ∂β∂α. We have the

inhomogeneous Maxwell equations!
b. Show explicitly, and with what assumptions, that this La-
grangian density differs from (12.85) by a 4-divergence. Does this
added 4-divergence affect the action or the equations of motion?
The other Lagrangian is

L = − 1

16π
FαβF

αβ − 1

c
JαA

α
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Write Fαβ explicitly as ∂αAβ − ∂βAα.

L = − 1

16π
(∂αAβ − ∂βAα)(∂αAβ − ∂βAα) − 1

c
JαA

α

The difference between this Lagrangian and the one in part a is

∆L = − 1

16π
[∂αAβ∂

αAβ−∂βAα∂
αAβ−∂αAβ∂

βAα+∂βAα∂
βAα−2∂αAβ∂

αAβ ]

∆L =
1

16π
[∂βAα∂

αAβ + ∂αAβ∂
βAβ] =

1

8π
∂αAβ∂

βAα

And by using the rule for differentiating a product.

1

8π
∂αAβ∂

βAα =
1

8π
∂α(Aβ∂

βAα) − 1

8π
Aβ∂

β∂αA
α

A careful reader will notice that I have switched the order of differentiation on
the last term. This is allowed because derivatives commute, i.e. [∂γ , ∂η] = 0.
In the Lorentz gauge, ∂αA

α = 0, and the last term vanishes, 1
8π
Aβ∂

β∂αA
α =

0. The remaining term, 1
8π
∂α(Aβ∂

βAα), is just a four divergence.
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Problem 13.4
a. Taking h̄〈ω〉 = 12Z eV in the quantum-mechanical energy-loss
formula, calculate the rate of energy loss 9in MeV/cm) in air at
NTP, aluminum, copper, and lead for a proton and a mu meson
(muon), each with kinetic energies of 10, 100, and 1000 MeV.
b. Convert your results to energy loss in units of MeV(cm2/g) and
compare the values obtained in different materials. Explain why
all the energy losses in MeV(cm2/g) are within a factor of 2 of each
other, whereas the values in meV/cm differ greatly.
The quantum mechanical energy loss formula is:

dE

dx
= 4πNZ

z2e4

mec2β2

[

ln

(

2γ2β2mec
2

h̄〈ω〉

)

− β2

]

This formula gives results in units of energy per distance. Numerically,
4π z2e4

mec2
= 5.1 × 10−25 Mev cm2, and 2mec2

h̄〈ω〉/Z = 2mec2

12
= 8.5 × 104. The mec

2

must be given in eV .
Another formula can be constructed which has units of energy times area per
mass. I do that by dividing the first result by ρ, the density. ρ is equal to
NA mnucleon.

dE

dx
/ρ = 4π

Z

Amn

z2e4

mec2β2

[

ln

(

2γ2β2mc2

h̄〈ω〉

)

− β2

]

β and γ can be determined for the muon and the electron using the relation-
ship β = p

E
, E = T + m, E2 = p2 + m2 (These formulas require that I use

units so that c = 1 and h̄ = 1).
Aluminum has Z = 13, Z = 27, and density, ρ = 2.7 gm/cm3. Copper has
Z = 29, A = 64, and ρ = 9.0. Lead has Z = 82, A = 208, and ρ = 11. For
air, we use Nitrogen, Z = 14, A = 28, and ρ = 1.3 × 10−3.
The energy loss per densities should be roughly the same because the electron
densities are similar if the atomic densities are the same. By dividing out
the density, we give out answer in a form that is independent or the atomic
density.
Incident Protons with Various Energies. (Energy Loss in Mev/cm)
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10 Mev 100 MeV 1000MeV
air 5 × 10−2 8 × 10−3 3 × 10−3

Al 100 17 5.2
Cu 310 52 16
Pb 330 55 17

Incident Muons with Various Energies. (Energy Loss in Mev/cm)

10 Mev 100 MeV 1000MeV
air 9 × 10−3 2.6 × 10−3 2.7 × 10−3

Al 19 5.4 5.6
Cu 58 17 17
Pb 61 18 18

Incident Protons. (Energy Loss in Mev cm2 / gm)

10 Mev 100 MeV 1000MeV
air 37 6.1 1.9
Al 37 6.3 1.9
Cu 34.8 5.8 1.8
Pb 30 5.0 1.6

Incident Muons. (Energy Loss in Mev cm2 / gm)

10 Mev 100 MeV 1000MeV
air 6.8 2.0 2.1
Al 7.0 2.0 2.1
Cu 6.5 1.9 1.9
Pb 5.6 1.6 1.6
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Problem 13.9
Assuming that Plexiglas or Lucite has an index of retraction of
1.50 in the visible region, compute the angle of emission of visi-
ble Cherenkov radiation for electrons and protons as a function of
their kinetic energies in MeV. Determine how many quanta with
wavelengths between 4000 and 6000 Angstroms are emitted per
centimeter of path in Lucite by a 1 meV electron, a 500 MeV pro-
ton, and a 5 GeV proton.
As usual, I’m going to take c = 1. We are asked to consider the Cherenkov
radiation for Plexiglas or Lucite. I think by index of retraction Jackson
meant index of refraction, i.e. n = 1.5. From Jackson 13.50, we have:
cos θc = 1

β
√

ǫ(ω)
= 1

βn
. The last equality is true because from Jackson 13.47,

v = c√
ǫ(ω)

but also v = c
n
, so

√

ǫ(ω) = n. To solve for β, use β = p
E

. Since

E = T +m, this gives us β =

√
(m+T )2−m2

m+T
=

√
T 2+2Tm
m+T

.
To find the number of photons within some energy range emitted per unit
length, consult the Particle Physics Data book to find

d2N

dλdx
=

−2παz2

λ2
sin2 θc

This can also be derived from Jackson 13.48.

d2E

dxdω
=
z2e2

c2
ω

(

1 − 1

β2n2

)

Now, in cgs units, e2 = αh̄c, so I can write

d2E

dxdω
=
z2αh̄

c
ω

(

1 − 1

β2n2

)

Notice that 1
β2n2 = cos2 θc. Thus, the term in parenthesis can be reduced

using elementary trigonometric relations to sin2 θc. Now, I make a dubious
step.

E = Nh̄ω → d2E = −d2Nh̄ω

So we have
d2N

dxdω
=

−z2α

c
sin2 θc
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Then, ω = 2πc
λ

so dω = −2πc
λ2 dλ. And finally, we get

d2N

dxdλ
=

2παz2

λ2
sin2 θc

which is the same as equation .
Integrate over λ.

dN

dx
=
∫ λ2

λ1

−2παz2

λ2
sin2 θcdλ = 2παz2 sin2 θc

(

λ2 − λ1

λ2λ1

)

Using λ1 = 4000|~r − ~r′|A and λ2 = 6000|~r − ~r′|A, we have a numerical
expression.

dN

dx
≃ 382.19 sin2 θc

in units of MeV/cm. θc is related to n and β from the results in part a.
I have lot’s of cool Maple plots which I plan on including but for now, I’ll
just give you the final numbers.
For an incident electron with T = 1 MeV, the number of Cherenkov photons
is about 187. The critical angle is 0.78 rad.
For an incident proton with T = 500 MeV, the number of Cherenkov photons
is about 79. The critical angle is 0.50 rad.
For an incident proton with T = 5 TeV, the number of Cherenkov photons
is about 208. The critical angle is 0.83 rad.
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Problem 14.5
A non-relativistic particle of charge Zq, mass m, and kinetic energy
T makes a head on collision with fixed central force field of infinite
range. The interaction is repulsive and described by a potential
V (r), which becomes greater than E at close distances.
a. Find the total energy radiated.
The total energy for the particle is constant.

E =
mv2

2
+ V (r) (10)

At rmin, the velocity will vanish and E = V (rmin).
From Jackson equation 14.21, we have the power radiated per solid angle for
an accelerated charge.

dP

dΩ
=
Z2q2

4πc3
|v̇|2 sin2 θ

From Newton’s second law, m|v̇| = |dV
dr
| so

dP

dΩ
=

Z2q2

4πc3m2
|dV
dr

|2 sin2 θ

The total power is dP
dΩ

integrated over all solid angles.

Ptotal =
∫ dP

dΩ
dΩ =

Z2q2

4πc3m2
|dV
dr

|2
∫ π

0
sin2 θdθ

∫ 2π

0
dφ

Evaluating the integrals,
∫ π
0 sin2 θdθ = 4

3
and

∫ 2π
0 dφ = 2π gives

Ptotal =
2

3

Z2q2

c3m2
|dV
dr

|2

The total work is the power integrated over the entire trip:

Wtotal =
∫

Ptotaldt = 2 × 2

3

Z2q2

c3m2

∫

|dV
dr

|2dt

The factor of two comes because the particle radiates as it accelerates to and
from the potential. We can solve equation 10 for v.

v =
dr

dt
=

√

2

m
[Vmin − V (r)]
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And from this equation, we find, dt = dr√
2

m
[Vmin−V (r)]

. So

Wtotal =
4

3

Z2q2

c3m2

∫ ∞

0
|dV
dr

|2 dr
√

2
m

[Vmin − V (r)]

The integral can be split into two integrals.

Wtotal =
4Z2q2

3c3m2

√

m

2

×




∫ rmin

0
| dV
dr

|2 dr
√

[Vmin − V (r)]
+
∫ ∞

rmin

|dV
dr

|2 dr
√

[Vmin − V (r)]





The region for the first integral is excluded because the particle will never go
there, thus, the first integral vanishes. We are left with

∆W =
4

3

Z2q2

c3m2

√

m

2

∫ ∞

rmin

| dV
dr

|2 dr
√

[Vmin − V (r)]
(11)

quod erat demonstrandum.
b. For the Coulomb potential, Vc(r) = zZq2

r
, find the total energy

radiated.
First, dVc

dr
= −zZq2

r2 = −Vc

r
. Also, we can solve for dr.

dVc = −Vc

r
dr → dr = −r

2dV

zZq2

Plug Vc(r) and dr into equation 11:

∆W = −4

3

Z2q2

c3m2

√

m

2

∫ 0

a

Vc

r

2 r2

zZq2dVc
√

[
mv2

0

2
− Vc]

= −4

3

Z

zm2c3

√

m

2

∫ 0

a

V 2
c dVc√
a− Vc

The limits of integration have been changed V (rmin) =
mv2

0

2
= a and V (∞) =

0.
The integral can be evaluated using your favorite table of integrals.

∫

x2dx√
A− x

= −
√
A− x

(

16A2

15
+

8Ax

15
+

2x2

5

)
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So the integral equals −16a2

15

√
a, and finally, we have

∆W =
4

3

Z

zm2c3

√

m

2

16

15

(

mv2
0

2

)
5

2

=
8

45

Zmv5
o

zc3
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